356 research outputs found

    Efficiently Finding Simple Schedules in Gaussian Half-Duplex Relay Line Networks

    Full text link
    The problem of operating a Gaussian Half-Duplex (HD) relay network optimally is challenging due to the exponential number of listen/transmit network states that need to be considered. Recent results have shown that, for the class of Gaussian HD networks with N relays, there always exists a simple schedule, i.e., with at most N +1 active states, that is sufficient for approximate (i.e., up to a constant gap) capacity characterization. This paper investigates how to efficiently find such a simple schedule over line networks. Towards this end, a polynomial-time algorithm is designed and proved to output a simple schedule that achieves the approximate capacity. The key ingredient of the algorithm is to leverage similarities between network states in HD and edge coloring in a graph. It is also shown that the algorithm allows to derive a closed-form expression for the approximate capacity of the Gaussian line network that can be evaluated distributively and in linear time. Additionally, it is shown using this closed-form that the problem of Half-Duplex routing is NP-Hard.Comment: A short version of this paper was submitted to ISIT 201

    Low Complexity Scheduling and Coding for Wireless Networks

    Get PDF
    The advent of wireless communication technologies has created a paradigm shift in the accessibility of communication. With it has come an increased demand for throughput, a trend that is likely to increase further in the future. A key aspect of these challenges is to develop low complexity algorithms and architectures that can take advantage of the nature of the wireless medium like broadcasting and physical layer cooperation. In this thesis, we consider several problems in the domain of low complexity coding, relaying and scheduling for wireless networks. We formulate the Pliable Index Coding problem that models a server trying to send one or more new messages over a noiseless broadcast channel to a set of clients that already have a subset of messages as side information. We show through theoretical bounds and algorithms, that it is possible to design short length codes, poly-logarithmic in the number of clients, to solve this problem. The length of the codes are exponentially better than those possible in a traditional index coding setup. Next, we consider several aspects of low complexity relaying in half-duplex diamond networks. In such networks, the source transmits information to the destination through nn half-duplex intermediate relays arranged in a single layer. The half-duplex nature of the relays implies that they can either be in a listening or transmitting state at any point of time. To achieve high rates, there is an additional complexity of optimizing the schedule (i.e. the relative time fractions) of the relaying states, which can be 2n2^n in number. Using approximate capacity expressions derived from the quantize-map-forward scheme for physical layer cooperation, we show that for networks with n≀6n\leq 6 relays, the optimal schedule has atmost n+1n+1 active states. This is an exponential improvement over the possible 2n2^n active states in a schedule. We also show that it is possible to achieve at least half the capacity of such networks (approximately) by employing simple routing strategies that use only two relays and two scheduling states. These results imply that the complexity of relaying in half-duplex diamond networks can be significantly reduced by using fewer scheduling states or fewer relays without adversely affecting throughput. Both these results assume centralized processing of the channel state information of all the relays. We take the first steps in analyzing the performance of relaying schemes where each relay switches between listening and transmitting states randomly and optimizes their relative fractions using only local channel state information. We show that even with such simple scheduling, we can achieve a significant fraction of the capacity of the network. Next, we look at the dual problem of selecting the subset of relays of a given size that has the highest capacity for a general layered full-duplex relay network. We formulate this as an optimization problem and derive efficient approximation algorithms to solve them. We end the thesis with the design and implementation of a practical relaying scheme called QUILT. In it the relay opportunistically decodes or quantizes its received signal and transmits the resulting sequence in cooperation with the source. To keep the complexity of the system low, we use LDPC codes at the source, interleaving at the relays and belief propagation decoding at the destination. We evaluate our system through testbed experiments over WiFi

    Study of Techniques For Reliable Data Transmission In Wireless Sensor Networks

    Get PDF
    This thesis addresses the problem of traffic transfer in wireless sensor networks (WSN). In such networks, the foremost challenge in the design of data communication techniques is that the sensor's transceiver circuitry consumes the major portion of the available power. Thus, due to stringent limitations on the nodes' hardware and power resources in WSN, data transmission must be power-efficient in order to reduce the nodes' power consumption, and hence to maximize the network lifetime while satisfying the required data rate. The transmit power is itself under the influence of data rate and source-destination distance. Thanks to the dense deployment of nodes in WSN, multi-hop communication can be applied to mitigate the transmit power for sending bits of information, i.e., gathered data by the sensor nodes to the destination node (gateway) compared to single-hop scenarios. In our approach, we achieve a reasonable trade-off between power-efficiency and transmission data rate by devising cooperative communication strategies through which the network traffic (i.e. nodes' gathered information) is relayed hop-by-hop to the gateway. In such strategies, the sensor nodes serve as data originator as well as data router, and assist the data transfer from the sensors to the gateway. We develop several data transmission schemes, and we prove their capability in transmitting the data from the sensor nodes at the highest possible rates allowed by the network limitations. In particular, we consider that (i) network has linear or quasi-linear topology, (ii) nodes are equipped with half-duplex radios, implying that they cannot transmit and receive simultaneously, (iii) nodes transmit their traffic at the same average rate. We compute the average data rate corresponding to each proposed strategy. Next, we take an information-theoretic approach and derive an upper bound to the achievable rate of traffic transfer in the networks under consideration, and analyze its tightness. We show that our proposed strategies outperform the conventional multi-hop scheme, and their average achievable rate approaches the upper bound at low levels of signal to noise ratio

    Capacity Enhancement in 60 GHz Based D2D Networks by Relay Selection and Scheduling

    Get PDF
    Millimeter-wave or 60 GHz communication is a promising technology that enables data rates in multigigabits. However, its tremendous propagation loss and signal blockage may severely affect the network throughput. In current data-centric device-to-device (D2D) communication networks, the devices with intended data communications usually lay in close proximity, unlike the case in voice-centric networks. So the network can be visualized as a naturally formed groups of devices. In this paper, we jointly consider resource scheduling and relay selection to improve network capacity in 60 GHz based D2D networks. Two types of transmission scenarios are considered in wireless personal area networks (WPANs), intra and intergroup. A distributed receiver based relay selection scheme is proposed for intragroup transmission, while a distance based relay selection scheme is proposed for intergroup transmission. The outage analysis of our proposed relay selection scheme is provided along with the numerical results. We then propose a concurrent transmission scheduling algorithm based on vertex coloring technique. The proposed scheduling algorithm employs time and space division in mmWave WPANs. Using vertex multicoloring, we allow transmitter-receiver (Tx-Rx) communication pairs to span over more colors, enabling better time slot utilization. We evaluate our scheduling algorithm in single-hop and multihop scenarios and discover that it outperforms other schemes by significantly improving network throughput

    Techniques de coopération appliquées aux futurs réseaux cellulaires

    Get PDF
    A uniform mobile user quality of service and a distributed use of the spectrum represent the key-ingredients for next generation cellular networks. Toward this end, physical layer cooperation among the network infrastructure and the wireless nodes has emerged as a potential technique. Cooperation leverages the broadcast nature of the wireless medium, that is, the same transmission can be heard by multiple nodes, thus opening up the possibility that nodes help one another to convey the messages to their intended destination. Cooperation also promises to offer novel and smart ways to manage interference, instead of just simply disregarding it and treating it as noise. Understanding how to properly design such cooperative wireless systems so that the available resources are fully utilized is of fundamental importance.The objective of this thesis is to conduct an information theoretic study on practically relevant wireless systems where the network infrastructure nodes cooperate among themselves in an attempt to enhance the network performance in many critical aspects, such as throughput, robustness and coverage. Wireless systems with half-duplex relay stations as well as scenarios where a base station overhears another base station and consequently helps serving this other base station's associated mobile users, represent the wireless cooperative networks under investigation in this thesis. The prior focus is to make progress towards characterizing the capacity of such wireless systems by means of derivation of novel outer bounds and design of new provably optimal transmission strategies.Une qualitĂ© de service uniforme pour les utilisateurs mobiles et une utilisation distribuĂ©e du spectre reprĂ©sentent les ingrĂ©dients clĂ©s des rĂ©seaux cellulaires de prochaine gĂ©nĂ©ration. Dans ce but, la coopĂ©ration au niveau de la couche physique entre les nƓuds de l’infrastructure et les nƓuds du rĂ©seau sans fil a Ă©mergĂ© comme une technique Ă  fort potentiel. La coopĂ©ration s’appuie sur les propriĂ©tĂ©s de diffusion du canal sans fil, c’est-Ă -dire que la mĂȘme transmission peut ĂȘtre entendue par plusieurs nƓuds, ouvrant ainsi la possibilitĂ© pour les nƓuds de s’aider Ă  transmettre les messages Ă  leur destination finale. La coopĂ©ration promet aussi d’offrir une façon nouvelle et intelligente de gĂ©rer les interfĂ©rences, au lieu de simplement les ignorer et les traiter comme du bruit. Comprendre comment concevoir ces systĂšmes radio coopĂ©ratifs, afin que les ressources disponibles soient pleinement utilisĂ©es, est d’une importance fondamentale. L’objectif de cette thĂšse est de mener une Ă©tude du point de vue de la thĂ©orie de l’information, pour des systĂšmes sans fil pertinents dans la pratique, oĂč les nƓuds de l’infrastructure coopĂšrent en essayant d’amĂ©liorer les performances du rĂ©seau. Les systĂšmes radio avec des relais semi-duplex ainsi que les scĂ©narios oĂč une station de base aide Ă  servir les utilisateurs mobiles associĂ©s Ă  une autre station de base, sont les rĂ©seaux sans fil coopĂ©ratifs Ă©tudiĂ©s dans cette thĂšse. Le but principal est la progression vers la caractĂ©risation de la capacitĂ© de ces systĂšmes sans fil au moyen de dĂ©rivation de nouvelles bornes supĂ©rieures pour les performances et la conception de nouvelles stratĂ©gies de transmission permettant de les atteindre

    Physical Layer Cooperation:Theory and Practice

    Get PDF
    Information theory has long pointed to the promise of physical layer cooperation in boosting the spectral efficiency of wireless networks. Yet, the optimum relaying strategy to achieve the network capacity has till date remained elusive. Recently however, a relaying strategy termed Quantize-Map-and-Forward (QMF) was proved to achieve the capacity of arbitrary wireless networks within a bounded additive gap. This thesis contributes to the design, analysis and implementation of QMF relaying by optimizing its performance for small relay networks, proposing low-complexity iteratively decodable codes, and carrying out over-the-air experiments using software-radio testbeds to assess real-world potential and competitiveness. The original QMF scheme has each relay performing the same operation, agnostic to the network topology and the channel state information (CSI); this facilitates the analysis for arbitrary networks, yet comes at a performance penalty for small networks and medium SNR regimes. In this thesis, we demonstrate the benefits one can gain for QMF if we optimize its performance by leveraging topological and channel state information. We show that for the N-relay diamond network, by taking into account topological information, we can exponentially reduce the QMF additive approximation gap from Θ(N)\Theta(N) bits/s/Hz to Θ(log⁥N)\Theta(\log N) bits/s/Hz, while for the one-relay and two-relay networks, use of topological information and CSI can help to gain as much as 66 dB. Moreover, we explore what benefits we can realize if we jointly optimize QMF and half-duplex scheduling, as well as if we employ hybrid schemes that combine QMF and Decode-and-Forward (DF) relay operations. To take QMF from being a purely information-theoretic idea to an implementable strategy, we derive a structure employing Low-Density-Parity-Check (LDPC) ensembles for the relay node operations and message-passing algorithms for decoding. We demonstrate through extensive simulation results over the full-duplex diamond network, that our designs offer a robust performance over fading channels and achieves the full diversity order of our network at moderate SNRs. Next, we explore the potential real-world impact of QMF and present the design and experimental evaluation of a wireless system that exploits relaying in the context of WiFi. We deploy three main competing strategies that have been proposed for relaying, Amplify-and-Forward (AF), DF and QMF, on the WarpLab software radio platform. We present experimental results--to the best of our knowledge, the first ones--that compare QMF, AF and DF in a realistic indoor setting. We find that QMF is a competitive scheme to the other two, offering in some cases up to 12% throughput benefits and up to 60% improvement in frame error-rates over the next best scheme. We then present a more advanced architecture for physical layer cooperation (termed QUILT), that seamlessly adapts to the underlying network configuration to achieve competitive or better performance than the best current approaches. It combines on-demand, opportunistic use of DF or QMF followed by interleaving at the relay, with hybrid decoding at the destination that extracts information from even potentially undecodable received frames. We theoretically quantify how our design choices affect the system performance. We also deploy QUILT on WarpLab and show through over-the-air experiments up to 55 times FER improvement over the next best cooperative protocol
    • 

    corecore