1,877 research outputs found

    Efficiently Extracting Randomness from Imperfect Stochastic Processes

    Get PDF
    We study the problem of extracting a prescribed number of random bits by reading the smallest possible number of symbols from non-ideal stochastic processes. The related interval algorithm proposed by Han and Hoshi has asymptotically optimal performance; however, it assumes that the distribution of the input stochastic process is known. The motivation for our work is the fact that, in practice, sources of randomness have inherent correlations and are affected by measurement's noise. Namely, it is hard to obtain an accurate estimation of the distribution. This challenge was addressed by the concepts of seeded and seedless extractors that can handle general random sources with unknown distributions. However, known seeded and seedless extractors provide extraction efficiencies that are substantially smaller than Shannon's entropy limit. Our main contribution is the design of extractors that have a variable input-length and a fixed output length, are efficient in the consumption of symbols from the source, are capable of generating random bits from general stochastic processes and approach the information theoretic upper bound on efficiency.Comment: 2 columns, 16 page

    Deep Learning Framework for Wireless Systems: Applications to Optical Wireless Communications

    Full text link
    Optical wireless communication (OWC) is a promising technology for future wireless communications owing to its potentials for cost-effective network deployment and high data rate. There are several implementation issues in the OWC which have not been encountered in radio frequency wireless communications. First, practical OWC transmitters need an illumination control on color, intensity, and luminance, etc., which poses complicated modulation design challenges. Furthermore, signal-dependent properties of optical channels raise non-trivial challenges both in modulation and demodulation of the optical signals. To tackle such difficulties, deep learning (DL) technologies can be applied for optical wireless transceiver design. This article addresses recent efforts on DL-based OWC system designs. A DL framework for emerging image sensor communication is proposed and its feasibility is verified by simulation. Finally, technical challenges and implementation issues for the DL-based optical wireless technology are discussed.Comment: To appear in IEEE Communications Magazine, Special Issue on Applications of Artificial Intelligence in Wireless Communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201
    corecore