646 research outputs found

    Efficiently Decodable Non-Adaptive Threshold Group Testing

    Full text link
    We consider non-adaptive threshold group testing for identification of up to dd defective items in a set of nn items, where a test is positive if it contains at least 2ud2 \leq u \leq d defective items, and negative otherwise. The defective items can be identified using t=O((du)u(ddu)du(ulogdu+log1ϵ)d2logn)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d - u} \right)^{d-u} \left(u \log{\frac{d}{u}} + \log{\frac{1}{\epsilon}} \right) \cdot d^2 \log{n} \right) tests with probability at least 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0 or t=O((du)u(ddu)dud3lognlognd)t = O \left( \left( \frac{d}{u} \right)^u \left( \frac{d}{d -u} \right)^{d - u} d^3 \log{n} \cdot \log{\frac{n}{d}} \right) tests with probability 1. The decoding time is t×poly(d2logn)t \times \mathrm{poly}(d^2 \log{n}). This result significantly improves the best known results for decoding non-adaptive threshold group testing: O(nlogn+nlog1ϵ)O(n\log{n} + n \log{\frac{1}{\epsilon}}) for probabilistic decoding, where ϵ>0\epsilon > 0, and O(nulogn)O(n^u \log{n}) for deterministic decoding

    Efficiently decodable non-adaptive group testing

    Get PDF
    We consider the following "efficiently decodable" non-adaptive group testing problem. There is an unknown string x 2 f0; 1gn [x is an element of set {0,1} superscript n] with at most d ones in it. We are allowed to test any subset S [n] [S subset [n] ]of the indices. The answer to the test tells whether xi = 0 [x subscript i = 0] for all i 2 S [i is an element of S] or not. The objective is to design as few tests as possible (say, t tests) such that x can be identifi ed as fast as possible (say, poly(t)-time). Efficiently decodable non-adaptive group testing has applications in many areas, including data stream algorithms and data forensics. A non-adaptive group testing strategy can be represented by a t x n matrix, which is the stacking of all the characteristic vectors of the tests. It is well-known that if this matrix is d-disjunct, then any test outcome corresponds uniquely to an unknown input string. Furthermore, we know how to construct d-disjunct matrices with t = O(d2 [d superscript 2] log n) efficiently. However, these matrices so far only allow for a "decoding" time of O(nt), which can be exponentially larger than poly(t) for relatively small values of d. This paper presents a randomness efficient construction of d-disjunct matrices with t = O(d2 [d superscript 2] log n) that can be decoded in time poly(d) [function composed of] t log2 t + O(t2) [t log superscript 2 t and O (t superscript 2)]. To the best of our knowledge, this is the first result that achieves an efficient decoding time and matches the best known O(d2 log n) [O (d superscript 2 log n)] bound on the number of tests. We also derandomize the construction, which results in a polynomial time deterministic construction of such matrices when d = O(log n= log log n). A crucial building block in our construction is the notion of (d,l)-list disjunct matrices, which represent the more general "list group testing" problem whose goal is to output less than d + l positions in x, including all the (at most d) positions that have a one in them. List disjunct matrices turn out to be interesting objects in their own right and were also considered independently by [Cheraghchi, FCT 2009]. We present connections between list disjunct matrices, expanders, dispersers and disjunct matrices. List disjunct matrices have applications in constructing (d,l)- sparsity separator structures [Ganguly, ISAAC 2008] and in constructing tolerant testers for Reed-Solomon codes in the data stream model. 1 IntroductionDavid & Lucile Packard FoundationCenter for Massive Data Algorithmics (MADALGO)National Science Foundation (U.S.) (Grant CCF-0728645)National Science Foundation (U.S.) (Grant CCF-0347565)National Science Foundation (U.S.) (CAREER Award CCF-0844796

    Linear-time list recovery of high-rate expander codes

    Full text link
    We show that expander codes, when properly instantiated, are high-rate list recoverable codes with linear-time list recovery algorithms. List recoverable codes have been useful recently in constructing efficiently list-decodable codes, as well as explicit constructions of matrices for compressive sensing and group testing. Previous list recoverable codes with linear-time decoding algorithms have all had rate at most 1/2; in contrast, our codes can have rate 1ϵ1 - \epsilon for any ϵ>0\epsilon > 0. We can plug our high-rate codes into a construction of Meir (2014) to obtain linear-time list recoverable codes of arbitrary rates, which approach the optimal trade-off between the number of non-trivial lists provided and the rate of the code. While list-recovery is interesting on its own, our primary motivation is applications to list-decoding. A slight strengthening of our result would implies linear-time and optimally list-decodable codes for all rates, and our work is a step in the direction of solving this important problem

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2logn)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlogn)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of δm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant δ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)logn)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009

    Some Applications of Coding Theory in Computational Complexity

    Full text link
    Error-correcting codes and related combinatorial constructs play an important role in several recent (and old) results in computational complexity theory. In this paper we survey results on locally-testable and locally-decodable error-correcting codes, and their applications to complexity theory and to cryptography. Locally decodable codes are error-correcting codes with sub-linear time error-correcting algorithms. They are related to private information retrieval (a type of cryptographic protocol), and they are used in average-case complexity and to construct ``hard-core predicates'' for one-way permutations. Locally testable codes are error-correcting codes with sub-linear time error-detection algorithms, and they are the combinatorial core of probabilistically checkable proofs

    A framework for generalized group testing with inhibitors and its potential application in neuroscience

    Get PDF
    The main goal of group testing with inhibitors (GTI) is to efficiently identify a small number of defective items and inhibitor items in a large set of items. A test on a subset of items is positive if the subset satisfies some specific properties. Inhibitor items cancel the effects of defective items, which often make the outcome of a test containing defective items negative. Different GTI models can be formulated by considering how specific properties have different cancellation effects. This work introduces generalized GTI (GGTI) in which a new type of items is added, i.e., hybrid items. A hybrid item plays the roles of both defectives items and inhibitor items. Since the number of instances of GGTI is large (more than 7 million), we introduce a framework for classifying all types of items non-adaptively, i.e., all tests are designed in advance. We then explain how GGTI can be used to classify neurons in neuroscience. Finally, we show how to realize our proposed scheme in practice
    corecore