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Abstract
We consider the following “efficiently decodable” non-
adaptive group testing problem. There is an unknown string
x ∈ {0, 1}n with at most d ones in it. We are allowed to test
any subset S ⊆ [n] of the indices. The answer to the test
tells whether xi = 0 for all i ∈ S or not. The objective
is to design as few tests as possible (say, t tests) such that
x can be identified as fast as possible (say, poly(t)-time).
Efficiently decodable non-adaptive group testing has appli-
cations in many areas, including data stream algorithms and
data forensics.

A non-adaptive group testing strategy can be repre-
sented by a t × n matrix, which is the stacking of all the
characteristic vectors of the tests. It is well-known that if
this matrix is d-disjunct, then any test outcome corresponds
uniquely to an unknown input string. Furthermore, we know
how to construct d-disjunct matrices with t = O(d2 logn)
efficiently. However, these matrices so far only allow for a
“decoding” time of O(nt), which can be exponentially larger
than poly(t) for relatively small values of d.

This paper presents a randomness efficient construction
of d-disjunct matrices with t = O(d2 logn) that can be de-
coded in time poly(d) · t log2 t + O(t2). To the best of our
knowledge, this is the first result that achieves an efficient de-
coding time and matches the best known O(d2 logn) bound
on the number of tests. We also derandomize the construc-
tion, which results in a polynomial time deterministic con-
struction of such matrices when d = O(logn/ log logn).

A crucial building block in our construction is the
notion of (d, `)-list disjunct matrices, which represent the
more general “list group testing” problem whose goal is to
output less than d + ` positions in x, including all the (at
most d) positions that have a one in them. List disjunct
matrices turn out to be interesting objects in their own right
and were also considered independently by [Cheraghchi,
FCT 2009]. We present connections between list disjunct
matrices, expanders, dispersers and disjunct matrices. List
disjunct matrices have applications in constructing (d, `)-
sparsity separator structures [Ganguly, ISAAC 2008] and in
constructing tolerant testers for Reed-Solomon codes in the
data stream model.

1 Introduction

The basic group testing problem is to identify the set of
“positives” from a large population of “items” using as

∗CSAIL, MIT. Email: indyk@mit.edu. Supported in part

by David and Lucille Packard Fellowship, MADALGO (Center

for Massive Data Algorithmics, funded by the Danish National
Research Association) and NSF grant CCF-0728645.
†Department of Computer Science and Engineering, University

at Buffalo, SUNY. Email: hungngo@buffalo.edu. Supported in
part by NSF grant CCF-0347565.
‡Department of Computer Science and Engineering, University

at Buffalo, SUNY. Email: atri@buffalo.edu. Supported by NSF
CAREER Award CCF-0844796.

few “tests” as possible. A test is a subset of items, which
returns positive if there is a positive in the subset. The
semantics of “positives,” “items,” and “tests” depend on
the application. For example, the topic of group testing
started in 1943 when Dorfman studied the problem of
testing for syphilis in WWII draftees’ blood samples [8].
In this case, items are blood samples, which are positive
if they are infected, and a test is a pool of samples. Since
then, group testing has found numerous applications
(see, e.g., the book [9]). Many applications require the
non-adaptive variant of group testing, in which all tests
are to be performed at once: the outcome of one test
cannot be used to adaptively design another test. Non-
adaptive group testing (NAGT) has found applications
in DNA library screening [22], multiple access control
protocols [3, 31], data pattern mining [21], data forensics
[15] and data streams [7], among others.

The main research focus thus far has been on
designing NAGT strategies minimizing the number of
tests. In some applications, however, the speed of the
“decoding” procedure to identify the positive items is
just as important, as we will elaborate later. In this
paper, we consider the following “efficiently decodable”
NAGT problem. Given integers n > d ≥ 1, and an
unknown string x ∈ {0, 1}n with at most d ones in it
(x is the characteristic vector of the positives), we are
allowed to test any subset S ⊆ [n] of the indices. The
answer to a test S tells whether xi = 0 for all i ∈ S.
The objective is to design as few tests as possible (say
t tests) such that we can identify the input string x as
efficiently as possible (say, in poly(t)-time).

A NAGT algorithm can be represented as a t × n
matrix M , where each row is the characteristic vector
of the subset of [n] to be tested. (The answers to the
tests can be thought of as M being multiplied by x,
where the addition is logical OR and multiplication is
the logical AND.) A well known sufficient condition for
such matrices to represent uniquely decodable NAGT
algorithms is one of disjunctiveness. In particular, a
matrix M is said to be d-disjunct if and only if the union
of at most d columns cannot contain another column.
Here, each column is viewed as a characteristic vector
on the set of rows. It is known that t × n d-disjunct
matrices can be constructed for t = O(d2 log n) [25, 2, 9].
A lower bound of t = Ω( d2

log d log n) has also been known
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for a long time [10, 11, 13].
In terms of decoding disjunct matrices, not much is

known beyond the “naive” decoding algorithm: keep
removing items belonging to the tests with negative
outcomes. The recent survey by Chen and Hwang [5]
lists various naive decoding algorithms under different
group testing models (with errors, with inhibitors, and
variations). The main reason for the lack of “smart”
decoding algorithms is that current decoding algorithms
are designed for generic disjunct matrices. Without
imposing some structure into the disjunct matrices, fast
decoding seems hopeless.

The naive decoding algorithm can easily be imple-
mented in time O(nt). For most traditional applica-
tions of group testing, this decoding time is fine. How-
ever, in other applications, this running time is pro-
hibitive. This raises a natural question (see e.g., [7, 16])
of whether one can perform the decoding in time that is
sub-linear (ideally, polylogarithmic) in n, while keeping
the number of tests at the best known O(d2 log n).

Our Main Result: In this paper we show that
such a decoding algorithm indeed exists. Specifically,
we present a randomness efficient construction of d-
disjunct matrices with t = O(d2 log n) tests that can
be decoded in time poly(d) · t log2 t + O(t2). In par-
ticular, we only need R = O(log t · max(log n, d log t))
many random bits to construct such matrices. Further,
given these R bits, any entry in the matrix can be con-
structed in time poly(t) and space O(log n+ log t). We
also derandomize the construction, which results in a
poly(n) time and poly(t) space deterministic construc-
tion of such matrices when d = O(log n/ log log n).

To the best of our knowledge, this is the first result
that achieves an efficient decoding time and matches the
best known O(d2 log n) bound on the number of tests.
An earlier result due to Guruswami and Indyk gives
efficient decoding time but with O(d4 log n) tests [16]. A
similar result but with O(d2 log2 n) tests is also implicit
in that paper.

1.1 Applications In this section we outline two sce-
narios where efficiently decodable disjunct matrices play
an important role, and how our results improve on the
earlier works.

Computing Heavy Hitters. Cormode and
Muthukrishnan [7] consider the following problem of
determining “hot items” or ”heavy-hitters.” Given a
sequence of m items from [n], an item is considered
“hot” if it occurs > m/(d + 1) times. Note that
there can be at most d hot items. Cormode and
Muthukrishnan proposed an algorithm based on NAGT
that computes all the hot items as long as the input
satisfies the following “small tail” property: all of the

non-hot items occur at most m/(d+ 1) times.
The algorithm works as follows: let M be a d-

disjunct t × n matrix. For each test i ∈ [t], maintain
a counter ci. When an item j ∈ [n] arrives (leaves
respectively), increment (decrement respectively) all the
counters ci such that Mij = 1 (i.e. all counters ci
for which test i contains item j). The algorithm also
maintains the total number of items m seen so far. At
any point in time, the hot items can be computed as
follows. Think of the test i corresponding to counter
ci as having a positive outcome if and only if ci >
m/(d + 1). Due to the small tail property, a test’s
outcome is positive if and only if it contains a hot item.
Thus, computing the hot items reduces to decoding the
result vector.

When Cormode and Muthukrishnan published their
result, the only decoder known for d-disjunct matrices
was the O(nt)-time naive decoder mentioned earlier.
This meant that their algorithm above could not be
efficiently implemented. The authors then provided
alternate algorithms, inspired by the group testing
idea above and left the task of designing an efficiently
decodable group testing matrix as an open problem.
Our main result answers this open question. This
application also requires that the matrix M be strongly
explicit, i.e. any entry in M can be computed in time
(and hence, space) poly(t). Our result satisfies this
requirement as well.

We would like to point out that the solution to the
hot items problem using our result is not as good as
the best known results for that problem. For example,
the paper [7] gives a solution which has a lower space
complexity than what one can achieve with efficiently
decodable NAGT. Nevertheless, the above application
to finding heavy hitters is illustrative of many other
applications of NAGT to data stream algorithms, and
we expect further results along these lines.

Digital forensics. Data forensics refers to the fol-
lowing problem in data structures and security. As-
sume that one needs to store a data structure on a
semi-trusted place. An adversary can change up to d
values (out of a total of n values) in the data struc-
ture (but cannot change the “layout” of the data struc-
ture). The goal is to “store” extra information into the
layout of the data structure so that if up to d values
in the data structure are changed then an auditor can
quickly pinpoint the locations where data was changed.
Goodrich, Atallah and Tamassia [15] introduced the
problem and used group testing to solve this problem.
In particular, using a randomness efficient construc-
tion, they present data forensics schemes on balanced
binary trees, skip lists and arrays (and linked lists)
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that can handle O
(

3

√
n/ log2 n

)
, O
(
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√
n/ log2 n
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and

O
(

4
√
n/ log n

)
many changes respectively. Using our

randomness efficient construction, we can improve these
bounds to O

(√
n/ log n

)
, O

(√
n/ log n

)
and O ( 3

√
n)

many changes respectively. These latter bounds are the
best possible with the techniques of [15]. (For more
details see Appendix A.)

1.2 Techniques
Connections to coding theory. Our construc-

tion involves concatenated codes. A concatenated bi-
nary code has an outer code Cout : [q]k1 → [q]n1 over
a large alphabet q = 2k2 and a binary inner code
Cin : {0, 1}k2 → {0, 1}n2 . The encoding of a message in
({0, 1}k2)k1 is natural. First, it is encoded with Cout and
then Cin is applied to each of the outer codeword sym-
bols. The concatenated code is denoted by Cout ◦ Cin.
(In fact, one can— and we will— use different inner
codes Ciin for every 1 ≤ i ≤ n1.)

Concatenated codes have been used to construct
d-disjunct matrices at least since the seminal work of
Kautz and Singleton [20]. In particular, they picked
Cout to be a maximum distance separable code of rate

1
d+1 (e.g., Reed-Solomon code with n1 = q) and the
inner code to be the identity code Iq that maps an el-
ement i ∈ [q] to the ith unit vector in {0, 1}q. The
disjunct matrix M corresponding to Cout ◦ Cin is ob-
tained by simply putting all the n = qk1 codewords as
columns of the matrix. The resulting matrix M is d-
disjunct and has t = O(d2 log2 n) many rows. Recently,
Porat and Rothschild presented a deterministic poly-
nomial (in fact, O(nt)) time construction of d-disjunct
matrices with O(d2 log n) rows [25]. In their construc-
tion, Cout is a code over an alphabet size Θ(d) that
lies on the Gilbert-Varshamov bound. Their inner code
is also the identity code as used by Kautz and Single-
ton. Note that since all these constructions result in
d-disjunct matrices, they can be decoded in O(nt) time.

Next, we outline how if Cout is efficiently list
recoverable (and Cin is the identity code), then M can
be decoded in poly(t) time. In particular, consider the
following natural decoding procedure for an outcome
vector r ∈ {0, 1}t. First, think of r = (r1, . . . , rn1) as a
vector in ({0, 1}n2)n1 , where each symbol in {0, 1}n2

lies naturally in one of the n1 positions in an outer
codeword. Now consider the following algorithm. For
each i ∈ [n1], let Li ⊆ [q] be the set of positions
where ri has a one. Since there are at most d positives,
|Li| ≤ d, for every i ∈ [n1]. Furthermore, if the jth item
is positive then the jth codeword (c1, . . . , cn1) ∈ Cout

satisfies the following property: for every 1 ≤ i ≤

n1, ci ∈ Li. In the Kautz-Singleton construction,
it can be checked that the construction of the Li
can be done in poly(t) time. Thus, we would be
in business if we can solve the following problem in
poly(n1) time: Given Li ⊆ [q] for every 1 ≤ i ≤ n1

with |Li| ≤ d, output all codewords (c1, . . . , cn1) ∈
Cout such that ci ∈ Li for every i ∈ [n1]. This is
precisely the (“error-free”) list recovery problem. It is
known that for Reed-Solomon codes, this problem can
be solved in poly(n1) time (cf. [26, Chap. 6]). This
observation was made by Guruswami-Indyk [16]. They
also presented an efficiently decodable (in fact O(t) time
decoding) d disjunct matrix with t = O(d4 log n) using
an expander based code as Cout. However, neither of the
constructions in [16] matches the best known bound of
t = O(d2 log n).

Overview of our construction. Our randomized
construction is based on an ensemble of codes that
was considered by Thommesen to construct random-
ized binary codes that lie on the Gilbert-Varshamov
bound [30]. Cout is the Reed-Solomon code but the in-
ner codes are chosen to be independent random binary
codes. Unlike [30], where the inner codes are linear, in
our case the (non-linear) inner codes are picked as fol-
lows: every codeword is chosen to be a random vector in
{0, 1}n2 , where each entry is chosen to be 1 with prob-
ability Θ(1/d). We show that this concatenated code
with high probability gives rise to a d-disjunct matrix.

The use of random, independently generated codes
is crucial for our purpose. This is because the correct-
ness of the aforementioned decoding algorithms cru-
cially uses the fact that Cin is d-disjunct. (In fact,
for the identity code, it is n-disjunct.) However, this
idea hits a barrier. In particular, as mentioned ear-
lier, d-disjunct matrices need to have Ω

(
d2

log d log n
)

many rows. This implies that if we are using a d-
disjunct matrix as an inner code and aO(1/d)-rate outer
Reed-Solomon code then the resulting matrix will have
Ω
(

d3

log d log n
)

rows. Thus, this approach seems to fall

short of obtaining the best known bound of O(d2 log n).
However, consider the following idea that is moti-

vated by list decoding algorithms for binary concate-
nated codes (cf. [17]). Let MCin be the n2 × q matrix
obtained by arranging the codewords in Cin as columns.
Think of MCin as representing a NAGT strategy for
at most d unknown positives. Suppose MCin has the
following weaker property than d-disjunctiveness. Let
y ∈ {0, 1}q be a vector with at most d ones in it, in-
dicating the positives, and let r ∈ {0, 1}n2 be the test
outcomes when applying MCin to y. Suppose it is the
case that any z ∈ {0, 1}q which results in the same test
outcome r as y has to satisfy (i) yi = 1 implies zi = 1
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and (ii) |z| ≤ 2d, where |z| denote the number of 1’s
in a binary vector z. (Note that in the d-disjunct case,
we need the stronger property that z = y.) Then, if
we use such an inner code instead of a d-disjunct ma-
trix, in the two step algorithm mentioned a couple of
paragraphs above we will have |Li| ≤ 2d (instead of
|Li| ≤ d). It turns out that, with this weaker inner
codes, one can still perform list recovery on such inputs
for Reed-Solomon codes. The only catch is that the two-
step algorithm can return up to O(d2) items including
all the (at most d) positives. We can thus run the naive
decoding algorithm (which will now take O(d2t) time)
to recover x exactly. Further, this latter step can be
done without making another pass over the input.

Perhaps most importantly, the relaxed notion of
disjunct matrices mentioned above can be shown to
exist with O(d log n) rows, which paves the way for the
final matrix to have O(d2 log n) rows as desired. It turns
out that these new objects are interesting in their own
right and next, we discuss them in more detail.

List Disjunct Matrices. We define (d, `)-list dis-
junct matrices as follows. A t × n matrix M is called
(d, `)-list disjunct if the following holds: for any disjoint
subsets S ⊆ [n] and T ⊆ [n] such that |S| ≤ d and
|T | ≥ `, there exists a row in which there is at least one
1 among the columns in T while all the columns in S
have a 0. It can be shown that given an outcome vector
r ∈ {0, 1}t obtained by using M on an input x ∈ {0, 1}n
with |x| ≤ d, running the naive decoder returns a vector
y ∈ {0, 1}n such that it contains x and |y| ≤ |x|+ `− 1.
(Hence, the name list disjunct matrix.) In the proof of
our main result, we use the fact that the random inner
codes with high probability are (d, d)-list disjunct.

These objects were independently considered by
Cheraghchi [6]. (In fact, he considered more general
versions that can handle errors in the test results.)
We study these objects in some detail and obtain the
following results. First, we show that (d, `)-list disjunct
matrices contain d-disjunct column sub-matrices, which
allows us to prove a lower bound of Ω(d/ log d log(n/`))
on the number of rows for such objects as long as
d ≤ O(log n/ log log n). (This gives a better lower bound
for large ` than the bound of d log(n/d)−d−` in [6].) We
also show that lossless expanders and dispersers with
appropriate parameters imply list disjunct matrices.
Using known constructions of expanders and dispersers
we construct (d, d)-list disjunct matrices with near
optimal (d log n)1+o(1) number of rows and (d, `)-list
disjunct matrices with O(d log n) rows when ` and d
are polynomially large in n.

We believe that list disjunct matrices are natural
objects and merit study on their own right. To sub-
stantiate our belief, we point out three application of

list disjunct matrices. First, as pointed out by Cher-
aghchi [6], (d, d)-list disjunct matrices can be used to
design optimal two-stage group testing algorithms. In
the two-stage group testing problem, one is allowed to
make tests into two stages (the tests in the second stage
can depend on the answers obtained in the first stage).
The algorithm works as follows: in the first round, one
uses the (d, d)-list disjunct matrix to obtain a subset
S ⊆ [q] of size at most 2d that contains all of the de-
fective positions. In the second stage, one can probe
each of the columns in S, to compute the defective lo-
cations. Note that this algorithm takes O(d log n) many
tests, which is optimal as there are (n/d)O(d) many pos-
sible answers. Second, we show that (d, `)-list disjunct
matrices immediately imply (d, d+`)-sparsity separator
structures. The latter were used by Ganguly to design
deterministic data stream algorithm for the d-sparsity
problem [14]. In fact, Ganguly’s construction of (d, 2d)-
sparsity separator uses lossless expander in pretty much
the same way we do. (See Section 6 for more details.)
Finally, we point out that the recent work of Rudra and
Uurtamo [27] uses (d, d)-list disjunct matrices to design
data stream algorithms for the following “tolerant test-
ing” of Reed-Solomon codes. Given the received word,
the algorithm needs to decide if it is within Hamming
distance d of some codeword or is at distance at least 2d
from every codeword. Their algorithm also works with
d-disjunct matrices but then one only gets a sub-linear
space data stream algorithm for d = o(

√
n), whereas

using list disjunct matrices allows them to design a sub-
linear space data stream algorithm for d = o(n). (See
Section 6 for more details.)

1.3 Paper Organization We begin with some pre-
liminaries in Section 2. In Section 3, we define list
disjunct matrices and present upper and lower bounds.
Section 4 formally presents the connection between list
recoverable codes and efficiently decodable disjunct ma-
trices. We present our main construction of efficiently
decodable disjunct matrices equaling the best known
number of tests in Section 5. Finally we present connec-
tions between list disjunct matrices and pseudo-random
objects and their applications in Section 6.

2 Preliminaries

For an integer ` ≥ 1, let [`] to denote the set {1, . . . , `}.
For any t×N matrix M , we will use Mj to refer to its
j’th column and Mij to refer to the i’th entry in Mj .
Let Fq denote the finite field of q elements.

The basic problem of non-adaptive combinatorial
group testing can be described as follows. Given a
population of N “items” which contains at most d
“positive” items, we want to identify the positives as
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quickly as possible using t simultaneous “tests.” Each
test is a subset of items, which returns “positive” if
there’s at least one positive item in the subset. We
want to “decode” uniquely the set of positives given the
results of the t simultaneous tests.

It is natural to model the tests as a t × N binary
matrix M where each row represents a test and each
column is an item. Set Mij = 1 if and only if item
j belongs to test i. The test outcome vector is a
t-dimensional binary vector r, where a 1 indicates a
positive test outcome for the corresponding test.

For the decoding to be unique, it is sufficient for
the test matrix M to satisfy a property called d-
disjunctiveness. We say a t×N binary matrix M is d-
disjunct if, for every column Mj in M and every subset
of d other columns Mj1 , . . . ,Mjd (i.e. j 6∈ {j1, . . . , jd}),
Mj 6⊆Mj1∪· · ·∪Mjd . Here, we interpret the columns as
(characteristic vectors of) subsets of [t]. The following
lemma gives a sufficient condition for disjunct matrices,
and can be shown by a simple counting argument [9].

Lemma 2.1. Let M be a binary matrix such that w is
the minimum Hamming weight of columns in M and
let λ be the size of the largest intersection between any
two columns in M . Then M is d-disjunct as long as
λd+ 1 ≤ w. In particular, M is

⌊
w−1
λ

⌋
-disjunct.

When M is d-disjunct, it is well-known that the
following naive decoder works (cf. [9]). Let the outcome
vector be r. For every i ∈ [t] and j ∈ [N ] such that
ri = 0 and Mij = 1, “eliminate” item j. Once all
such indices from [N ] are eliminated, we will be left
precisely with the set of positives. The naive decoder
takes O(tN)-time.

A (t, k, d)q-code C is a subset C ⊆ [q]t of size
qk such that any two codewords differ in at least d
positions. The parameters t, k, d and q are known as
the block length, dimension, distance and alphabet size
of C. Sometimes we will drop the distance parameter
and refer to C as a (t, k)q code.

Given a (t, k, d)q code C, let MC denote the t× qk
matrix whose columns are the codewords in C. We
shall construct disjunct matrices by specifying some
binary code C and show that MC is disjunct. The
codes C that we construct will mostly be obtained
by “concatenating” an outer code – based on Reed-
Solomon codes – with a suitably chosen inner code.

Given an (n1, k1)2k2 code Cout and an (n2, k2)2 code
Cin, their concatenation, denoted by Cout◦Cin is defined
as follows. Consider a message m ∈

(
{0, 1}k2

)k1 .
Let Cout(m) = (x1, . . . , xn1). Then, Cout ◦ Cin(m) =
(Cin(x1), . . . , Cin(xn1)) . Cout ◦ Cin is an (n2n1, k1k2)2-
code.

In general, we can concatenate Cout with n1 differ-

ent inner codes C1
in, . . . , C

n1
in , one per position. Denote

this general concatenated code as Cout ◦ (C1
in, . . . , C

n1
in ).

It is defined in the natural way. Given any message
m ∈

(
{0, 1}k2

)k1 , let Cout(m) = (x1, . . . , xn1). Then,

Cout ◦ (C1
in, . . . , C

n1
in )(m) =

(
C1

in(x1), . . . , Cn1
in (xn1)

)
.

Let `, L ≥ 1 be integers and let 0 ≤ α ≤ 1. A
q-ary code C of block length n is called (α, `, L)-list
recoverable if, for every sequence of subsets S1, . . . , Sn
such that |Si| ≤ `,∀i ∈ [n], there are at most L
codewords c = (c1, . . . , cn) for which ci ∈ Si for at
least αn positions i. A (1, `, L)-list recoverable code
will be henceforth referred to as (`, L)-zero error list
recoverable. We will need the following powerful result
due to Parvaresh and Vardy1:

Theorem 2.1. ([24]) For any given integer s ≥ 1,
prime power r, power q of r, and every pair of integers
1 < k ≤ n ≤ q, there exists an explicit Fr-linear map
E : Fkq → Fnqs satisfying the following:

1. The image C ⊆ Fnqs of E is a code of minimum
distance at least n− k + 1.

2. Provided

(2.1) α > (s+ 1)(k/n)s/(s+1)`1/(s+1),

C is an (α, `,O((rs)sn`/k))-list recoverable code.
Further, a list recovery algorithm exists that runs in
poly((rs)s, q, `)-time. For s = 1, the (s+ 1) factor
in the right-hand-side of (2.1) can be removed.

In the above, the s’th “order” Parvaresh-Vardy code
will be referred to as the PVs code. PV1 is the well-
known Reed-Solomon codes and will be referred to as
the RS code.

The simplest possible binary code is probably the
“identity code” Iq : [q]→ {0, 1}q defined as follows. For
any i ∈ [q], Iq(i) is the vector in {0, 1}q that has a 1 in
the i’th position and zero everywhere else. It is easy to
see that

Lemma 2.2. MIq
is q-disjunct.

The following result was shown in [25] by concate-
nating a q-ary code on the GV bound (with q = Θ(d)
and relative distance 1− 1/d) with the identity code Iq.

Theorem 2.2. ([25]) Given n and d ≥ 1. There exists
a t×n d-disjunct matrix MPR such that t = O(d2 log n).
Further, the matrix can be constructed in time (and
space) O(tn), and all the columns of MPR have the same
Hamming weight.

1This statement of the theorem appears in [18].
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3 List Disjunct Matrices and Basic Bounds

We now define a generalization of group testing that is
inspired by list decoding of codes and will be useful in
our final construction. Let `, d ≥ 1 be integers. We call
a t×n boolean matrixM (d, `)-list disjunct if for any two
disjoint subsets S and T of [n] where |S| ≤ d, |T | ≥ `,
we have

⋃
j∈T Mj 6⊆

⋃
j∈SMj . Note that a d-disjunct

matrix is a (d, 1)-list disjunct matrix and vice versa.
Without loss of generality, we assume that ` ≤ n − 1.
When d + ` > n, we can replace d by d = n − `. If
d+` ≤ n, then it is sufficient to replace the condition in
the definition by |S| = d, |T | = `. Thus, we will assume
d+ ` ≤ n henceforth, and only consider |S| = d, |T | = `
as the condition in the definition of (d, `)-list disjunct
matrices.

We next prove upper and lower bounds for the
optimal “rate” of list disjunct matrices. To prove an
upper bound for the optimal number of rows of a
(d, `)-list disjunct matrix, and to devise a nO(d) time
construction for it, the idea is to cast the problem of
constructing a (d, `)-list disjunct matrix as a special case
of the so-called k-restriction problem defined and solved
in Alon, Moshkovitz, and Safra [2]. (The proof appears
in Appendix B.)

Lemma 3.1. Given positive integers n ≥ d+ 1, let ε0 =(
`
d+`

)(
d
d+`

)d/`
. Then, a t×n (d, `)-list disjunct matrix

can be constructed so that t =
⌈

2(d+`) lnn+ln (d+`
d )

ε0

⌉
in

time poly
((
d+`
d

)
, nd+`, 2d+`, 1

ε

)
. In particular, if ` =

Θ(d), then a t × n (d, `)-list disjunct matrix can be
constructed in time nO(d) where t = O(d log n).

Later on, we will see constructions of (d,Θ(d))-list
disjunct matrices that can be constructed more time-
efficiently than Lemma 3.1. However, those construc-
tions need more tests (up to logarithmic factors).

Next we show that any (d, `)-list disjunct matrix
M contains a large enough d-disjunct sub-matrix. The
proof follows by building a hypergraph from M and then
observing that an independent set in the hypergraph
corresponds to a d-disjunct matrix. Then a result due
to Caro and Tuza [4] completes the proof.

Lemma 3.2. Let d, ` ≥ 1 and t, n ≥ 1 be integers. Let
M be a t × n (d, `)-list disjunct matrix. Then there
is a t × m sub-matrix of M that is d-disjunct with
m ≥ Ω

((
n
d`

) 1
d

)
. In particular, any t × n matrix that

is (d, `)-list disjunct (with d ≤ O(log n/ log logn) and
1 ≤ ` ≤ n1−γ for some constant γ > 0) needs to satisfy
t = Ω

(
d

log d · log n
)
.

Proof. Consider the following hypergraph H: each of
the n columns in M forms a vertex and there is a
(d + 1)-hyperedge among d + 1 vertices in S ⊂ [n] if
there exists a j ∈ S such that the jth column of M is
contained in the union of the columns in S \ {j}. Note
that an independent set in H of size m corresponds
to a column sub-matrix of M that is d-disjunct. For
notational convenience define deg(i) to be the degree of
i in H.

Thus, we need to show that there exists a large
enough independent set in H, for which we use a
result of Caro and Tuza [4]. In particular, H has an
independent set of size at least (cf. [28, Pg. 2]):

(3.2)
∑
i∈[n]

1
f(i)

, where f(i) = Θ
(

(1 + deg(i))
1
d

)
.

We claim that for at least n/2 vertices i,

(3.3) deg(i) ≤ 2(d+ 1)
(

n

d− 1

)
(`− 1).

Since
(
n
d−1

)
≤ nd−1, (3.3) and (3.2) imply that H has

an independent set of size at least Ω((n/(d`))1/d), as
desired.

Next, we prove (3.3). First, we claim that the
number of edges in H is upper bounded by n

(
n
d−1

)
(`−1).

This implies that the average degree of H is at most
(d+1)

(
n
d−1

)
(`−1). An averaging argument proves (3.3).

Now we upper bound the number of edges in H. To this
end, “assign” a vertex i to all its incident edges S ⊆ [n]
such that there exists a j 6= i where the jth column is
contained in the union of the columns in S \ {j}. For
every T ⊆ [n] with |T | = d with i ∈ T , there exists
at most ` − 1 many j such that T ∪ {j} is an edge.
(This follows from the fact that M is (d, `)-list disjunct.)
Thus, any vertex i is assigned to at most

(
n
d−1

)
(` − 1)

edges. Since every edge is assigned at least one vertex,
the total number of edges is bounded by n

(
n
d−1

)
(`− 1),

as desired.
The lower bound on the number of rows in a (d, `)-

list disjunct matrix then follows from the lower bound
on the number of rows in a d-disjunct matrix. The
bound on d ≤ O(log n/ log logn) is needed to make sure
that the lower bound on list disjunct matrix holds. (The
latter for a d-disjunct matrix with N columns needs
d ≤ Õ(

√
N)). �

Cheraghchi proves a lower bound of d log(n/d) − `
for (d, `)-list disjunct matrices [6]. This is better than
the bound in Lemma 3.2 for moderately large ` (e.g.
when ` = Θ(d)).
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4 From List Recoverable Codes to Efficiently
Decodable Group Tests

As was mentioned in the introduction section, concate-
nating an efficiently list recoverable outer code with
list disjunct inner codes gives rise to efficiently decod-
able disjunct matrices. The decoding algorithm mimics
the standard list decoding algorithm for concatenated
codes.

Theorem 4.1. Let d, `, L ≥ 1 be integers and 0 <
α ≤ 1 be a real number. Let Cout be an (n1, k1)2k2

code which can be (α, d + ` − 1, L)-list recovered in
time T1(n1, d, `, L, k1, k2). Let C1

in, . . . , C
n1
in be (n2, k2)2

codes such that for at least αn1 values of 1 ≤ i ≤ n1,
MCi

in
is (d, `)-list disjunct and can be (“list”) decoded

in time T2(n2, d, `, k2). Suppose the matrix M
def
=

MCout◦(C1
in,...,C

n1
in ) is d-disjunct. Note that M is a t×N

matrix where t = n1n2 and N = 2k1k2 . Further, suppose
that any arbitrary position in any codeword in Cout and
Ciin can be computed in space S1(n1, d, `, L, k1, k2) and
S2(n2, d, `, k2), respectively. Then,

(a) given any outcome vector produced by at most d
positives, the positive positions can be recovered
in time n1T2(n2, d, `, k2) + T1(n1, d, `, L, k1, k2) +
O(Lt); and

(b) any entry in M can be com-
puted in O (log t+ logN) +
O (max{S1(n1, d, `, L, k1, k2), S2(n2, d, `, k2)})
space.

Proof. The decoding algorithm for M is the natural
one. Let E ⊆ [N ] with |E| ≤ d be the set of positive
items. Further let r = (r1, . . . , rn1) ∈ ({0, 1}n2)n1 be
the outcome vector.

In the first step of the algorithm, for each i ∈ [n1],
run the list decoding algorithm for MCi

in
on outcome

(sub-) vector ri. For each i where MCi
in

is (d, `)-
list disjunct we will obtain a set Si ⊆ {0, 1}n2 with
|Si| ≤ d+ `− 1. There are at least αn1 such i. For the
indices i where MCi

in
is not (d, `)-list disjunct, let Si be

d+ `− 1 arbitrary members of {0, 1}n2 . This step takes
time n1T2(n2, d, `, k2).

In the second step, we run the list recovery algo-
rithm for Cout on S1, . . . , Sn1 . This step will output a
subset T ⊆ [N ] such that |T | ≤ L. This step takes time
T1(n1, d, `, L, k1, k2). Now if we can ensure that E ⊆ T ,
then we can run the naive algorithm on M restricted to
the columns in T to recover E in time O(Lt). Thus, the
total running time of the algorithm is as claimed.

To complete the argument above, we need to show
that E ⊆ T . Without loss of generality, assume

E = {m1, . . . ,md} ⊆ ({0, 1}n2)n1 . Denote mj =
(mj

1, . . . ,m
j
n1

) where mj
i ∈ {0, 1}n2 . By definition of

r, we have ri = m1
i ∪ · · · ∪md

i . Consequently, if MCi
in

is (d, `)-list disjunct, then {m1
i , . . . ,m

d
i } ⊆ Si. As at

least αn1 of the MCi
in

are (d, `)-list disjunct, E will be
included in the set T of at most L codewords returned
by the list recovery algorithm for Cout, which is an
(α, d+ `− 1, L)-list recoverable code.

Finally, we argue the space complexity. Given
i = (i1, i2) ∈ [n1] × [n2] and j ∈ ({0, 1}k2)k1 , we can
compute Mij in the following natural way. First com-
pute (Cout(j))i1 in space S1(n1, d, `, L, k1, k2) and then
compute

(
Ci1in ((Cout(j))i1)

)
i2

in space S2(n2, d, `, k2).
We might need the extra O(log t+ logN) space to store
the indices i and j. �

By instantiating the outer and inner codes in The-
orem 4.1 with different specific codes, we obtain sev-
eral constructions balancing some tradeoffs: there ex-
ists disjunct matrices that can be decoded in poly(t)
time with O(d2 log2N), O(d3 logN(log d + log logN))
and O(d3 logN) many tests. Further, any entry in these
matrices can be constructed in space poly(log t, logN),
poly(log t, logN) and poly(t, logN) respectively. Last
but not least, we can also design efficiently decodable
list group testing by using the PVs code with s = 1/ε
as the outer code. All the proofs are in Appendix C.

Lemma 4.1. Let N > d, s ≥ 1 be integers. Then
there exists a constant c ≥ 1 and a t × N matrix M
with t = O

(
scsd1+1/s log1+sN

)
that is

(
d, scsd1+1/s

)
-

list disjunct and can be list decoded in poly(t) time.
Further, any entry of the matrix can be computed in
poly(log t, logN, s) space.

The result above achieves better bounds than the
efficient decodable constructions of list disjunct matrices
in [6] (though the results in [6] can also handle errors).

5 On Constructing Efficiently Decodable
Disjunct Matrices

This section contains the main result of the paper. We
first show probabilistically that, given d and N , there
exists a t × N efficiently decodable d-disjunct matrix
with t = O(d2 logN), which matches the best known
constructions of disjunct matrices (whether probabilis-
tic or deterministic). We then show that our probabilis-
tic construction can be derandomized with low space or
low time complexity.

5.1 Probabilistic Existence of Efficiently De-
codable Disjunct Matrices

Theorem 5.1. Let d, k1, k2 be any given positive in-
tegers such that 10dk1 ≤ 2k2 . Define n1 = 10dk1,
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n2 = 480dk2, t = n1n2, and N = 2k1k2 . Note that
n1 ≤ 2k2 and t = O(d2 logN).

Let Cout be any
(
n1, k1

def
= n1

10d , n1

(
1− 1

10d

))
2k2

-

code. Then, there exist inner codes C1
in, . . . , C

n1
in , each of

which is an (n2, k2)2 code such that the following hold:

(a) Let C∗ = Cout ◦ (C1
in, . . . , C

n1
in ), then MC∗ is t×N

matrix that is d-disjunct.

(b) For every i ∈ [n1], MCi
in

is a (d, d)-list disjunct
matrix.

Proof. We will show the existence of the required inner
codes by the probabilistic method. In particular, we will
refer to each inner code Ciin by its corresponding matrix
MCi

in
. For every 1 ≤ i ≤ n1, pick MCi

in
to be a random

n2 × 2k2 binary matrix where each entry is chosen
independently at random to be 1 with probability 1

10d .
We stress that the random choices for each of the inner
codes are independent of each other.

We first bound the probability that condition (a)
holds, i.e. MC∗ is d-disjunct. For notational conve-
nience define q = 2k2 and M∗ = MC∗ .

By Lemma 2.1, M∗ is d-disjunct if the following two
events hold:

(i) Every column has Hamming weight at least t
20d+1.

(ii) Every two distinct columns agree in at most t
20d2

positions.

Consider event (i). Any arbitrary column M∗j of
M∗ is simply a random vector in {0, 1}t where every
bit is 1 independently with probability 1

10d . Thus, by
Chernoff bound the probability that M∗j has Hamming
weight ≤ t/(20d) is at most e−t/(120d). Taking a union
bound over the N choices of j, we conclude that event
(i) does not hold with probability at most Ne−

t
120d ≤

N−39d, where the inequality follows from the fact that
t = 4800d2 log2N .

We now turn to event (ii). Pick two distinct
columns i 6= j ∈ [N ]. By the fact that Cout has
relative distance at least 1 − 1

10d , the ith and jth
codeword in Cout disagree in some positions S ⊆ [n1]
with |S| = (1 − 1

10d )n1. Let A1 ∈ {0, 1}t(1−
1

10d ) and
A2 ∈ {0, 1}

t
10d denote M∗i projected down to S and

[N ]\S. Let B1 and B2 denote the analogous projections
for M∗j . Note that we need to bound the random
variable |A1 ∩B1|+ |A2 ∩B2|.

We start with |A1∩B1|. Note that by the definition
of A1, B1 and the inner codes, A1 ∩B1 ∈ {0, 1}t(1−

1
10d ),

where each bit is 1 independently with probability 1
100d2 .

Thus, by Chernoff bound,

Pr
[
|A1 ∩B1| ≥ 2

t

100d2

]
≤ Pr

[
|A1 ∩B1| ≥

2
100d2

t(1− 1
10d

)
]

≤ e−
1

300d2 t(1− 1
10d ) ≤ e−t/(600d

2).

Next, we turn to |A2 ∩B2|. Note that |A2 ∩B2| ≤ |A2|
and that A2 is a random vector in {0, 1} t

10d where each
bit is 1 independently with probability 1

10d . Again, by
Chernoff bound the probability that |A2| ≥ 2t

100d2 is at
most e−t/(300d

2) ≤ e−t/(600d2).
Thus, by the union bound the probability that

|A1 ∩ B1| + |A2 ∩ B2| < 4t
100d2 < t

20d2 is at least
1−2e−t/(600d

2) = 1−2e−8k1k2 ≥ 1−2N−11. Taking the
union bound over all

(
N
2

)
choices of i and j, we conclude

that (ii) is violated with probability at most N−9.
Overall, condition (a) does not hold with probability
at most 1/N39d + 1/N9 ≤ 2/N9.

We now bound the probability that condition (b)
holds. To this end we will show that for any 1 ≤ i ≤ n1,
Ciin is not (d, d)-list disjunct with probability at most
q−58d. Then by the union bound and the fact that
n1 ≤ 2k2 = q, condition (b) does not hold with
probability at most q−57d. For the rest of the proof,
fix an 1 ≤ i ≤ n1. For notational convenience, we will
denote the matrix MCi

in
as M i. We note that the n2×q

matrix M i is not (d, d)-list disjunct if there exists two
disjoint subsets S1, S2 ⊆ [q] of size d such that for every
j ∈ S1, M i

j ⊆ ∪`∈S2M
i
` . We will upper bound the

probability of such an event happening. Note that all
the entries in M i are independent random variables.
This implies (along with the union bound) that the
probability that M i is not (d, d)-list disjunct is at most(
q

d

)(
q − d
d

)(
1−

(
1−

(
1− 1

10d

)d)(
1− 1

10d

)d)n2

≤ q2d
(

1− (1− 1/ 10
√
e) · 1

10
√
e

)n2

≤ q2d2−n2/8 ≤ q−58d,

where the last inequality follows from our choice of
n2 = 480dk2.

Thus, with probability at least 1− 2
N9 − 1

257dk2
both

of the required properties are satisfied. �

We use the theorem above to prove the existence
of an efficiently decodable disjunct matrix matching the
best upper bound known to date.

Corollary 5.1. Let N > d ≥ 1 be any given in-
tegers. There exists a t × N d-disjunct matrix with
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t = O(d2 logN) that can be decoded in time poly(d) ·
t log2 t+O(t2).

Proof. We ignore the issue of integrality for the sake
of clarity. First, suppose N ≥ 100d2. Set k2 =
log2(10d log2N) ≥ 1 and k1 = log2N

k2
≥ 1. It follows

that 10dk1 ≤ 2k2 . Theorems 5.1, 4.1 and 2.1 complete
the proof. The outer code in Theorem 5.1 is RS with
rate 1

10d , which is known to have relative distance
1 − 1

10d . The decoding of the outer RS code is done
via the algorithm in [1] that runs in poly(d) · t log2 t
time. The naive decoding algorithm is used to decode
the inner codes, which takes O(t2) time.

Next, when d < N < 100d2 we can remove
arbitrarily 100d2−N columns from a t×100d2 efficiently
decodable d-disjunct matrix to obtain a t×N efficiently
decodable d-disjunct matrix which still satisfies t =
O(d2 logN). �

5.2 Derandomizing the Proof of Corollary 5.1
Using Nisan’s PRG for space bounded computation [23],
we can reduce the amount of randomness in Corol-
lary 5.1.

Corollary 5.2. Let N > d ≥ 1 be any given integer.
Then using O(log t · max(logN, d log t)) random bits,
with probability 1 − o(1), one can construct a t × N d-
disjunct matrix with t = O(d2 logN) that can be decoded
in time poly(d) · t log2 t+O(t2).

Proof. The idea is to apply Nisan’s PRG G for space
bounded computations. In particular, Nisan’s PRG
can fool computations on R input bits with space S ≥
Ω(logR) by using only O(S logR) pure random bits.
(This PRG has low space requirements and is strongly
explicit, which useful for data stream algorithms.) The
idea is to use G on the computation that checks condi-
tions (a) and (b) in proof of Theorem 5.1. Let’s start
with the checks needed for condition (a). This has two
parts. First, we need to check that all the N columns in
M∗ has Hamming weight at least t

20d +1. To do this we
need O(logN) bits to keep track of the column index.
Then for each column we have to

• Compute the element in the corresponding RS code
for each of the n1 outer positions (we will need
O(log n1) = O(k2) space to keep an index for these
positions). Each such symbol from F2k2 can be
computed in space O(k2) (by the fact that the
generator matrix of RS codes is strongly explicit);

• For each symbol in RS codeword, we need to
count the number of ones in the encoding in the
corresponding inner codes. For this we will need
O(log t) space to access an element of the O(t) ×

O(t) inner code matrix and another O(log t) space
to maintain the counter.

Thus, overall we will need O(logN) space. The next
part of checking condition (a) will need to us compute
the Hamming distance between

(
N
2

)
columns. Using the

accounting above, we conclude that this step can also
be computed with O(logN) space.

We now account for the amount of space needed to
check condition (b). To do this, we need to check that all
of the n1 inner codes are (d, d)-list disjunct. For each of
the inner codes, we need to consider all pairs of disjoint
subsets of [2k2 ] of size d. (One can keep track of all
such subsets in space O(dk2) = O(n2) = O(d log t). For
the latter equality we will need to choose n1 = Θ(2k2).)
Then for each pairs of such subsets of columns, we need
to check if for some row, all the columns in one subset
have 0 while at least one column in the other subset has
a 1. Since there are n2 rows in the inner code matrix,
this check be done in spaceO(log n2+log d) = O(log n2).
Thus, overall to check condition (b), we need O(d log t)
space.

Thus, overall we are dealing with a S =
O(max(logN, d log t)) space computation on R = O(t2)
inputs. However, there is a catch in that Nisan’s PRG
works with R unbiased random bits while in our proof
we are dealing with R 1

10d -biased bits. However, it is
easy to convert R′ = O(R log d) unbiased random bits to
R 1

10d -biased bits (e.g., by grouping O(log d) chunks of
unbiased bit and declaring a 1 if and only if all the bits in
the chunk are 1.) Further, this conversion only needs an
additional O(log log d+logR) space. Given this conver-
sion, we can assume that our proof needs unbiased bits.
Thus, we can applyG with S′ = S+O(log log d+log t) =
O(S) and R′ = O(t2 log d) = O(t3). Thus, this implies
that we can get away with O (log t ·max(logN, d log t))
unbiased random bits. �

Corollary 5.2 implies that we can get a determinis-
tic construction algorithm with time complexity
max

(
NO(log d+log logN), NO(d log2 d/ logN)

)
, by cycling

through all possible random bits. Next, we use the
method of conditional expectation to get a faster de-
terministic construction time.

Corollary 5.3. Let N > d ≥ 1 be any given integer.
There exists a deterministic O(t5N2)+NO(d log d/ logN)-
time and poly(t)-space algorithm to construct a t×N d-
disjunct matrix with t = O(d2 logN) that can be decoded
in time poly(d) · t log2 t+O(t2).

Proof. Let us define three sets of random variables. For
every i ∈ [N ], let Xi be the indicator variable of the
event that the ith column of M∗ has Hamming weight
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at most t
20d . Further, for every pair i 6= j ∈ [N ], define

Yi,j to be the indicator variable of the event that the
ith and the jth columns of M∗ agree in strictly more
than t/(20d2) positions. Finally, for any i ∈ [n1] and
disjoint subsets S, T ⊆ [q] with |S| = |T | = d, define
Zi,S,T denote the indicator variable for the event that
for the ith inner code (whose matrix is denoted by M i),
∪j∈SM i

j ⊆ ∪j∈TM i
j . Define V =

∑
Xj +

∑
Yi,j +∑

Zi,S,T . Note that in the proof of Theorem 5.1, we
have shown that over the random choices for the inner
codes,

E[V ] =
∑
j∈[N ]

E[Xj ] +
∑

i6=j∈[N ]

E[Yi,j ]

+
n1∑
j=1

∑
S⊆[q],|S|=d

∑
T⊆[q],

|T |=d,T∩S=∅

E[Zj,S,T ]

<
2
N9

+
1

257dk2
.

And, since k2 was chosen to be log2(10d log2N) in
the proof of Corollary 5.1, we have E[V ] < 2

N9 +
1

(10d log2N)57d .
To derandomize the proof, we will use the standard

method of conditional expectation by fixing each of
the random bits one at a time (in an arbitrary order)
and assigning the bit 0 or 1, whichever minimizes the
conditional expectation of V given the corresponding
assignment. Recall that the random bits define n1

inner n2 × q matrices, and that each bit is chosen to be
one with probability 1

10d . Note that we can apply the
method of conditional expectation if we can compute
the following conditional probabilities (where A denotes
an assignment to an arbitrary subset of bits in the inner
codes):

1. For every j ∈ [N ], Pr[Xj = 1|A];

2. For every i 6= j ∈ [N ], Pr[Yi,j = 1|A];

3. For every i ∈ [n1] and disjoint subsets S, T ⊆ [q]
with |S| = |T | = d, Pr[Zi,S,T = 1|A].

We claim that each of the probabilities above can
be computed in time O(t3) (assuming Cout is a strongly
explicit linear code, e.g. RS code).2 This implies that
each of the n1n2q ≤ t2 conditional expectation values of
V can be computed in time O(Nt3) +O(N2t3) + tO(d).
Thus, the overall running time of the algorithm is

O(t5N2) + 2O(d(log d+log logN)) = O(t5N2) +NO( d log d
log N ).

2We do not try to optimize exact polynomial dependence on t
here.

Note that the construction time is polynomial in N as
long as d is O(logN/ log logN).

We conclude this proof by showing how to compute
the three kinds of probability. We begin with the X(·)
indicator variables. Fix j ∈ [N ]. First we need to
compute the codeword Cout(j). If Cout is a strongly
explicit linear code, this can be accomplished with O(t2)
multiplications and additions over F2k2 . Since 2k2 ≤ t,
each of these operations can definitely be performed in
time O(t). Thus, this entire step takes O(t3) time. Now
to compute Pr[Xj |A], we need to substitute the ith
(1 ≤ i ≤ n1) symbol in Cout(j) (over F2k2 ) with the
corresponding column in MCi

in
. Note that the resulting

vector will have some bits fixed according to A while the
rest are independent random bits that take a value of 1
with probability 1

10d . Thus, we are left with computing
the “tail” of a Binomial distribution on O(t) trials each
with a success probability of 1

10d . This can be trivially
computed in time O(t2). Computing Pr[Yi,j = 1|A] is
similar to the computation above (the only difference
being we have to deal with a Binomial distribution
where the success probability is 1

100d2 ) and thus, also
takes O(t3) time overall.

We finally turn to the Z(·,·,·) indicator variables.
Fix i ∈ [n1] and disjoint subsets S, T ⊆ [q] with
|S| = |T | = d. Note that we want to compute

∏
j∈[n2]

pj ,
where pj denote the probability that if the jth row of
MCi

in
has a one in the columns from S then it also

has a one in the columns spanned by T . Note that
with the partial assignment A, pj is either 0, 1 or is
1 −

(
1−

(
1− 1

10d

)a) (1− 1
10d

)b (where a and b are the
number of columns in S and T where the values in the
jth row are not yet fixed by A). It is easy to check that
each such pj can be computed in time O(d2). Thus,
E[Zi,S,T |A] can definitely be computed in time O(t2).

We conclude by noting that the algorithm above
can be implemented in poly(t) space. �

6 More on List Disjunct Matrices and their
Applications

We begin with connections between list disjunct matri-
ces and dispersers and expanders. (We also present a
connection between expanders and disjunct matrices in
Appendix D.) Then we present two applications of list
disjunct matrices.

6.1 Connection to Dispersers We now state a
simple connection between list disjunct matrices and
dispersers. A D-left regular bipartite graph [N ]× [D]→
[T ] is an (N,L, T,D, ε)-disperser if every subset S ⊂ [N ]
of size at least L has a neighborhood of size at least
ε|T |. Given such a bipartite expander G, consider the
T×N incidence matrix MG of G. We make the following
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simple observation.

Proposition 6.1. Let G be an (n, `, t, εt/(d + 1), ε)-
disperser. Then MG is a (d, `)-list disjunct matrix.

Proof. Consider two disjoint subsets of columns S1 and
S2 with |S1| ≥ ` and |S2| = d. To prove the claim, we
need to show that ∪i∈S1Mi 6⊆ ∪i∈S2Mi. We prove the
later inequality by a simple counting argument. By the
value of the degree of G, we get that

| ∪i∈S2 Mi| ≤
dtε

d+ 1
< εt.

On the other hand, as G is a disperser, | ∪i∈S1 Mi| ≥ εt,
which along with the above inequality implies that
∪i∈S1 6⊆ ∪i∈S2 , as desired. �

The best known explicit constructions of dis-
persers is due to Zuckerman [32], who presents ex-
plicit (N,Nδ, N (1−α)δ, O(logN/ log γ−1), γ)-dispersers,
which by Proposition 6.1 implies the following:

Theorem 6.1. Let γ, ε > 0 be any constants. Then
there exists an explicit t × N (d, `)-list disjunct matrix
with t = O(d logN), d = Nγ and ` = d1+ε.

6.2 Connection to Expanders We now state a
simple connection between list disjunct matrices and
expanders. A W -left regular bipartite graph [N ] ×
[W ]→ [T ] is an (N,W, T,D, (1−ε)W ) expander if every
subset S ⊂ [N ] of size at most D has a neighborhood
(denoted by Γ(S)) of size at least (1 − ε)|S|W . Given
such a bipartite expander G, consider the T × N
incidence matrixMG ofG. We have the following simple
observation.

Proposition 6.2. Let G be a (n,w, t, 2d,w/2 + 1)-
expander. Then MG is a (d, d)-list disjunct matrix.

Proof. Recall that by definition a matrix M is (d, d)-
list disjunct if the following is true: for every two
disjoint S1 and S2 subsets of columns of size exactly
d, both ∪i∈S1Mi 6⊆ ∪j∈S2Mj and ∪j∈S2Mj 6⊆ ∪i∈S1Mi

hold. Note that this property for MG translates to the
following for G: ΓG(S1) 6⊆ ΓG(S2) and vice-versa. We
now argue that the latter is true if G has an expansion
of w/2 + 1. Indeed this follows from the facts that
|ΓG(S1 ∪ S2)| ≥ wd + 2d and |ΓG(S1)|, |ΓG(S2)| ≤ wd.
�

We remark that in our application, we are not
really concerned about the value of W and are
just interested in minimizing T . (Generally in ex-
panders one is interested in minimizing both simultane-
ously.) The probabilistic method shows that there exist

(N,W, T,D,W/2 + 1)-expanders with T = O(D logN)
(and W = O(logN)). This by Proposition 6.2 implies
that

Corollary 6.1. There exist t × N matrices that are
(d, d)-list disjunct with t = O(d logN).

Later on in this section, we show that there exists
an explicit (N,W, T,D,W/2 + 1)-expander with T =
(D logN)1+o(1). (We thank Chris Umans for the proof.)
This with Proposition 6.2 implies the following:

Corollary 6.2. There is an explicit t×N matrix that
is (d, d)-list disjunct with t = (d logN)1+o(1).

Cheraghchi achieves a slightly better construction
with d1+o(1) log n tests.

6.2.1 An Explicit Expander Construction To
construct an explicit expander for our purposes, we will
use the following two constructions.

Theorem 6.2. ([19]) Let ε > 0. There exists an
explicit (N1,W1, T1, D1,W1(1− ε)) expander with T1 ≤
(4D1)logW1 and W1 ≤ 2 logN1 logD1/ε.

Theorem 6.3. ([29]) Let ε > 0 be a constant.
Then there exists an explicit (N2,W2, T2, D2,W2(1 −
ε))-expander with T2 = O(D2W2) and W2 =
2O(log logN2+(log logD2)

3).

We will combine the above two expanders using the
following well known technique.

Proposition 6.3. Let G1 be an (N,W1, T1, D,W1(1−
ε))-expander and G2 be an (T1,W2, T2, DW1,W2(1 −
ε))-expander. Then there exists an
(N,W1W2, T2, D,W1W2(1 − 2ε))-expander G. Further,
if G1 and G2 are explicit then so is G.

Proof. The graph G is constructed by “concatenating”
G1 and G2. In particular, construct the following
intermediate tripartite graph G′ (on the vertex sets [N ],
[T1] and [T2] respectively), where one identifies [T1] once
as the right vertex set for G1 and once as the left vertex
set of G2. The final graph G is bipartite graph on
([N ], [T2]) where there is an edge if and only if there is a
corresponding path of length 2 in G′. It is easy to check
that G is an (N,W1W2, T2, D,W1W2(1−2ε))-expander.
�

Next, we prove the following result by combining all
the ingredients above.

Theorem 6.4. There exists an explicit
(N,W, T,D,W/2 + 1)-expander with T =
O(D logN · f(D,N)), where

f(D,N) = 2O((log logD)3+(log log logN)3).
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Note that f(D,N) = (D logN)o(1).

By Theorem 6.2, there exists an explicit
(N,W1, T1, D, 3W1/4 + 1)-expander, where

W1 ≤ 16 logN logD,

and
T1 ≤ (4D)4+log logN+log logD.

By Theorem 6.3, there exists an explicit
(T1,W2, T2, D2, 3W2/4 + 1)-expander, where

D2 = DW1 ≤ 16D logN logD,

W2 is 2O(log log T1+(log logD2)
3), which in turn is at most

2O((log logD)3+(log log logN)3), and T2 is

W2D2 ≤ 16D logN logD · 2O((log logD)3+(log log logN)3)

≤ D logN · f(D,N),

as desired.
Next, we move onto applications of list disjunct

matrices.

6.3 Sparsity Separator Structure Ganguly in [14]
presents a deterministic streaming algorithm for d-
sparsity testing, which is defined as follows. Given a
stream of m items from the domain [n], let f be the
vector of frequencies, i.e., for every i ∈ [n], fi denotes
the number of occurrences of i in the stream. The d
sparsity problem is to determine if f has at most d non-
zero entries. [14] presents an algorithm for the special
case when fi ≥ 0 (otherwise the problem is known to
require linear space for deterministic algorithms).

A crucial building block of Ganguly’s algorithm is
what he calls a (d, `)-sparsity separator structure, which
is a data structure that can determine if the frequency
vector corresponding to a stream has at most d non-zero
entries or it has at least ` non-zero entries. We now
show how any (d, `−d)-list disjunct t×n matrix M can
be used to build a (d, `)-sparsity separator structure.
The idea is almost the same as the use of disjunct
matrices in determining hot items [7]: we maintain t
counters, one for each test (i.e. {cj}j∈[t]). Whenever an
item i arrives/leaves, increment/decrement all counters
cj such that the jth test contains i. At the end
convert the counters to a result vector r ∈ {0, 1}t in
a straightforward manner: rj = 1 if and only if cj > 0.
We decode the result vector r according to M and if
the number of ones in the output is at most `− 1 then
declare the sparsity to be at most d otherwise declare
the sparsity to be at least `.

We now briefly argue the correctness of the algo-
rithm above. First define a binary vector x ∈ {0, 1}n

such that xi = 1 if and only if fi > 0. Since all the
frequencies are non-negative, it is easy to see that the
result vector r computed above is exactly the same as
the one that would result from M acting on x. Now
consider the two cases (a) x has Hamming weight at
most d. In this case as M is (d, `− d)-list disjunct, the
decoder for M will output a vector with at most ` − 1
ones in it. (b) Now let us consider the case that x has
Hamming weight at least `. In this case, note that each
xi = 1 will contribute a one to all the rj such that i is
contained in test j. Thus, the decoder for M will output
a vector with at least ` ones in it. This completes the
proof of correctness of the algorithm above.

We would like to point out in the above we assumed
the following property of the decoder for M : when
provided with an input x with Hamming weight more
than d, the decoder will output a vector with Hamming
weight larger than that of x. It is easy to check that the
naive decoding algorithm has this property. However,
the decoding time is not longer sub-linear.

We also remark that the the way Ganguly uses
lossless expanders to construct (d, 2d)-sparsity separator
structures in exactly the same way we use them to
construct (d, d)-list disjunct matrices in Proposition 6.2.
However, [14] uses properties of expanders to come up
with a more efficient “decoder” than what we have for
(d, d)-list disjunct matrices.

6.4 Tolerant Testing of Reed-Solomon Codes
Rudra and Uurtamo in [27] consider the classical code-
word testing problem in the data stream domain. In
particular, they consider one pass data stream algo-
rithms for tolerant testing and error detection of Reed-
Solomon (RS) codes. Informally, in the former problem,
given a received word, the tester has to decide whether
it is close to some RS codeword or is far from every
RS codeword. In the latter problem, one has to decide
whether the received word is a codeword or not.

Using a slight modification of the well known finger-
printing technique, they give a poly-log space one pass
data stream algorithm to solve the error detection
problem for RS codes. Then they reduce the tolerant
testing problem to error detection via (list) disjunct
matrices. In particular, assume that the tolerant tester
wants to distinguish between the case when the received
word is at Hamming distance at most d from some RS
codeword and the case that it is at a Hamming distance
at least ` from every RS codeword. The reduction is not
trivial, so we just sketch the main idea in the reduction
here. (They crucially use the fact that any RS code
projected onto a (large enough) subset of positions is
also an RS code.) Here is a simple idea that does not
quite work. Fix a (d, `−d)-list disjunct matrix M . Then
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for each test, check if the corresponding projected down
received word belongs to the corresponding RS code
(using the error detection algorithm). Then given the
outcome vector use the decoding algorithm to determine
whether at most d or at least ` errors have occurred
as in the previous application. The catch is that the
correspondence is not necessarily one to one in the sense
that some of the test answers might have false negatives
(as a projected down error pattern might be a codeword
in the corresponding projected down RS code). In [27],
this issue is resolved by appealing to the list decoding
properties of RS codes.

Acknowledgments We thank Venkat Guruswami and
Chris Umans for helpful discussions. Thanks again to
Chris Umans for kindly allowing us to use his proof of
Theorem 6.4.
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A Data Forensics and Group Testing

Goodrich, Atallah and Tamassia [15] present the follow-
ing application of group testing to data forensics. Data
forensics refers to the following problem in data struc-
tures and security. Assume that one needs to store a
data structure on a semi-trusted place. An adversary
can change up to d values (out of a total of n values) in
the data structure (but cannot change the “layout” of
the data structure). The goal is to “store” extra infor-
mation into the data structure so that if up to d values
in the data structure are changed then an auditor can
quickly pinpoint the locations where data was changed.
The authors point out that an auditor generally has
very few resources and thus one needs to store all the
book-keeping information in the data structure itself.
The authors consider certain data structures and show
that extra information can be encoded into the “layout”
of the data structure. For example, given n numbers,
there are n! possible layouts and thus one can encode
O(n log n) bits of information into the layout. (They
also show how to do this information “hiding” in other
data structures such as balanced binary search trees and
skip lists.)

The question then is what information should be
stored in the layout of the data structure such that the
auditor can detect the changes. The authors propose
the use of a d-disjunct matrix (where each of the
columns correspond to the n items) as follows. For
each test in the matrix, concatenate all the values
of the items present in the test and store its hash
value. This requires O(t) bits of storage. Further, the
matrix itself has to be stored. Towards this end, the

authors present a randomness efficient construction of
a d-disjunct matrix with t = O(d2 log n) that needs
O(d3 log2 n) random bits. (That is, any entry of the
matrix can be computed given these bits and with
high probability over the random choices, the resulting
matrix is d-disjunct.) Thus, the overall number of bits
to be encoded into the layout of the data structure is
O(d3 log2 n). Given a possibly altered data structure,
the auditor uses the information stored in the layout of
the data structure to recompute the hashes according
to the current values for each test in the matrix. If
the computed hash value differs from the one stored,
it amounts to the test being positive. Computing the
locations where values were changed now just amount to
decoding of the disjunct matrix. Using this framework,
the authors prove that for balanced binary trees, skip
lists and arrays (as well as linked lists) that store n
items, the scheme above allows the auditor to pin-point

up to O( 3

√
n/ log2 n), O( 3

√
n/ log2 n) and O( 4

√
n/ log n)

many changes respectively. (The authors show that
for the layout of the data structures can store Θ(n),
Θ(n) and Θ(n log n) bits respectively. The bounds
on d are obtained by equating the space requirements
for the algorithms to the space available in the data
structures.3)

We remark that in [15], the representation of
the matrix takes up more space than the space re-
quired to store the hash values. Our random-
ness efficient construction requires O(max(log n(log d+
log n log n), d(log d + log log n)2)) = O(d log2 n) many
random bits, which is better than the bound in [15].
Using our result in the framework of Goodrich et al.,
we can improve their results to show that for balanced
binary trees, skip lists and arrays (as well as linked
lists) that store n items, the auditor can pin-point up to
O( 2
√
n/ log n), O( 2

√
n/ log n) and O( 3

√
n) many changes

respectively. Note that these bounds are the best possi-
ble with the techniques of [15]. In addition, given that
our disjunct matrices are efficiently decodable, the audi-
tor can pin-point the changes faster than the algorithm
in [15]. We remark that the result of Porat and Roth-
schild [25] will also provide similar improvements in the
number of changes that can be tolerated, though the
decoding algorithms will be slower than ours.

B Omitted proofs from Section 3

B.1 Proof of Lemma 3.1 We will only need the
binary version of the k-restriction problem, which is
defined as follows. The input to the problem is an

3For the array/linked list data structures, due to technical

reasons, the space requirement of the algorithms has be be
increased by a factor of d + 1.
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alphabet Σ = {0, 1}, a length n, and a set of m
possible demands fi : Σk → {0, 1}, 1 ≤ i ≤ m.
For every demand fi, there is at least one vector
a = (a1, . . . , ak) ∈ Σk such that fi(a) = 1 (in
words, fi “demands” vector a). Thus, every demand
fi “demands” a non-empty subset of vectors from Σk.
A feasible solution to the problem is a subset S ⊆ Σn

such that: for any choice of k indices 1 ≤ j1 < j2 <
· · · < jk ≤ n, and any demand fi, there is some
vector v = (v1, . . . , vn) ∈ S such that the projection
of v onto those k indices satisfies demand fi; namely,
fi(vj1 , vj2 , . . . , vjk) = 1. The objective is to find a
feasible solution S with minimum cardinality. Alon,
Moshkovitz, and Safra gave a couple of algorithmic
solutions to the k-restriction problems. In order to
describe their results, we need a few more concepts.

Given a distribution D : Σn → [0, 1], the density of
a k-restriction problem with respect to D is

ε := min
1≤j1<···<jk≤n

1≤i≤m

{Prv←D [fi(vj1 , vj2 , . . . , vjk) = 1]}

In words, for any k positions j1, . . . , jk, and any demand
fi, if we pick a vector v from Σn at random according
to D then the projection of v onto those k positions
satisfies fi with probability at least ε. The restriction
Dj1,...,jk of a distribution D on Σn to indices j1, . . . , jk
is defined by

Dj1,...,jk(a) := Prv←D [vj1 = a1 ∧ · · · ∧ vjk = ak]

Two distribution P,Q on Σn are said to be k-wise
ε-close if, for any 1 ≤ j1 < j2 < · · · < jk ≤ n,
‖Pj1,...,jk−Qj1,...,jk‖1 < ε. The support of a distribution
on Σn is the number of members of Σn which have
positive probabilities. Finally, a distribution D on Σn is
said to be k-wise efficiently approximable if the support
of a distribution P which is k-wise ε-close to D can be
enumerated in time poly(m, 1

ε , 2
k).

One of the main results from [2] is the following.
The reader is referred to their paper for the definitions
of k-wise efficiently approximable distributions.

Theorem B.1. (Alon-Moshkovitz-Safra [2]) Fix
some k-wise efficiently approximable distribution D
on Σn. For any k-restriction problem with density ε
with respect to D, there is an algorithm that, given
an instance of the problem and a constant parameter
0 < δ < 1, obtains a solution S of size at most
dk lnn+lnm

(1−δ)ε e in time poly(m,nk, 2k, 1
ε ,

1
δ ).

A distribution D on Σn = {0, 1}n is called a product
distribution if all coordinates are independent Bernoulli
variables. (Coordinate i is 1 with probability pi for some
fixed pi.)

Theorem B.2. ([12]) Any product distribution on Σn

is k-wise efficiently approximable.

We are now ready to prove Lemma 3.1.
First, we show that constructing (d, `)-list disjunct

matrices is a special case of the k-restriction problem.
Consider an arbitrary t × n (d, `)-list disjunct matrix
M . The matrix satisfies the property that, for any set
of d columns C1, . . . , Cd, and any disjoint set C ′1, . . . , C

′
`

of ` other columns, there exists a row i of M in which
C ′1(i) = · · · = C ′d(i) = 0 and C1(i) + · · ·+ C`(i) > 0.

Let k = d + `. Define m =
(
d+`
d

)
“demands”

fI : Σk → {0, 1} as follows. For every d-subset I ∈
(
[k]
d

)
,

fI(a) = 1 if and only if aj = 0,∀j ∈ I and
∑
j /∈I aj > 0.

We just set up an instance of the k-restriction problem.
A solution S to this instance forms the rows of our t×n
matrix.

Next, let D be the product distribution on {0, 1}n
defined by setting each coordinate to be 1 with proba-
bility p to be determined. Then, D is k-wise efficiently
approximable by Theorem B.2. Fix 1 ≤ j1 < j2 <
· · · < jk ≤ n and any demand fI . Choose any vector v
from {0, 1}n according to D. The projection of v onto
coordinates j1, . . . , jk “satisfies” fI with probability

ε(p) =
(

1− (1− p)`
)

(1− p)d .

The density ε is maximized at p0 = 1 −
(

d
d+`

)1/`

. Set
ε0 = ε(p0), δ = 1/2, and apply Theorem B.1.

C Omitted Proofs from Section 4

By concatenating RS codes with the identity code, we
get efficient group testing with O(d2 log2N)-tests.

Corollary C.1. Given any integers N > d ≥ 1, there
exists a t×N d-disjunct matrix M with t = O(d2 log2N)
that can be decoded in time poly(t). Furthermore, each
entry of M can be computed in space poly(log t, logN).

Proof. The construction is classic [20]: set M =
MRS◦Iq

, where q = 2k2 is some power of 2, Iq is the
identity code of order q, and RS is the (q − 1, k1)q RS
code. The numbers k1 and k2 are to be chosen based on
N and d. Then, we apply Theorem 4.1 with Cout = RS
and Ciin = Iq for all i which shows that M is an effi-
ciently decodable d-disjunct matrix. In the following,
we will ignore the issue of integrality for the sake of
clarity.

Set k2 = log(d logN) and k1 = logN
k2

. It follows
that d(k1−1)+1 ≤ q−1. Note that every column of M
has weight exactly q−1. Further, as any two codewords
in RS agree in at most k1 − 1 positions, it follows from
Lemma 2.1 that M is d-disjunct.
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is (d, 1)-list disjunct (i.e. d-disjunct) and
can be decoded in O(dq)-time. For the outer code, we
apply Theorem 2.1 with α = 1, ` = d, r = 2 and s = 1
to show that RS is (1, d, L)-list recoverable. Note that
(2.1) is satisfied with this set of parameters because d <
(q−1)/k1. Thus by Theorem 2.1, Cout is (d,O(qd/k1))-
zero error list recoverable in time poly(d, q). Note that
N = 2k1k2 = qk1 , t = q(q − 1) = O(d2 log2N), and
qd/k1 = d2 log(d logN); thus, the decoding time is as
claimed.

The claim on the space constructibility of the
matrix follows from the fact that any position in an RS
codeword can be computed in space poly(k1, k2) and
any bit value in any codeword in Cq can be computed
in O(k2) space. �

Similarly, by using the (q − 1, k)q RS code as the
outer code and the code from Corollary C.1 as the
inner code, we obtain efficient Group Testing with
O
(
d3 logN(log d+ log logN)

)
tests.

Corollary C.2. Given any integers N > d ≥ 1,
there exists a t × N d-disjunct matrix M with t =
O(d3 logN(log d+log logN)) that can be decoded in time
poly(t). Furthermore, each entry of M can be computed
in space poly(log t, logN).

Proof. Fix d ≥ 1. Pick q, k and Cout as in the proof
of Corollary C.1. Then pick Cin to be the concatenated
code C∗ corresponding to Corollary C.1 with N = Θ(q).
Note that every codeword in C∗ has the same weight
(say w) and for every two codeword in C∗, there are
at most w/d positions where both of them have a
value 1. In other words, every column of MRS◦C∗ has
Hamming weight wq and every two columns agree in at
most 2wq/d positions, which by Lemma 2.1 implies that
MRS◦C∗ is also d/2-disjunct. Further, by Corollary C.1,
C∗ is (d, d)-list disjunct and can be “list decoded” in
time poly(d, log q). Note that for MRS◦C∗ , we have
t = O(d3k log2 q) and N = qk. �

The following corollary presents efficient Group
Testing with O

(
d3 logN

)
tests and is better than

Corollary C.2 in terms of the number of tests, but worse
in construction space complexity for non-constant d. To
prove the corollary, use the RS code as the outer code
and the code from Theorem 2.2 as the inner code.

Corollary C.3. Let d ≥ 1. There exists t × N d-
disjunct matrix M with t = O(d3 logN) that can be
decoded in time poly(t). Further, each entry of M can
be computed in space poly(t, logN).

Proof. The idea here is to use RS code as the outer code
and the code from Theorem 2.2 as the inner code.

Fix d ≥ 1. Pick q and k so that d is the largest
integer with d < q−1

k . Let Cout be an (q−1, k)q RS code.
Pick Cin to be the concatenated code C∗ corresponding
to Theorem 2.2 with N = Θ(q). Every codeword in C∗

has the same weight (say w) and further, for any two
codewords in C∗, there are at most w/d positions where
both have a 1. Then by using the same argument in the
proof of Corollary C.2 and by the choice of q and k,
MRS◦C∗ is also d/2-disjunct.

Further, by Theorem 2.2, C∗ is (d, d)-list disjunct
and can be decoded in time O(qd2 log q). Note that for
MRS◦C∗ , we have t = O(kd3 log q) and N = qk.

The claim on the space complexity follows from
Theorem 2.2 and the fact that any position in Cout can
be computed in space poly(log q, k). �

C.1 Proof of Lemma 4.1 Pick q and k such that d is
the largest integer such smaller than

(
q
k

)s · 1
(s+1)s+1 . Let

Cout be the PVs code with block length q and dimension
k and pick the inner code to be Cqs . The required
matrix corresponds to the concatenated code Cout ◦Cin.
Note that N = qk and t = qs+1. This along with the
choice of d, implies the claimed bound on t.

The list decoding of MPVs◦Cqs proceeds along ob-
vious lines: think of the outcome vector as r =
(r1, . . . , rq) ∈ ({0, 1}qs

)q and decode each ri for Cqs

resulting in a set Si ⊆ [qs] of size |Si| ≤ d (the lat-
ter is because Cqs is d-disjunct). We will use The-
orem 2.1 with α = 1, ` = d, r = 2 and n = q.
By the choice of d, (2.1) is satisfied. Thus, Theo-
rem 2.1 implies that MPVs◦Cqs is (d, L)-list disjunct for
L = O(sO(s)qd/k) = O

(
sO(s)d1+1/s

)
, where the latter

equality follows from the choice of parameters. Decod-
ing the inner codes takes time O(qs+1) while decoding
the outer code takes time poly(sO(s), q, d). Thus, by
the choice of the parameters, the total decoding time is
poly(t) as required.

Finally, the claim on the low space constructibility
of MPVs◦Cqs follows from the fact that any position in
an arbitrary codeword in PVs and Cqs can be computed
in space poly(s, log q, k) and O(s log q) respectively. �

D Disjunct Matrices and Expanders

Here is a connection between expanders and disjunct
matrices.

Proposition D.1. Let G be a (n,w, t, 2, w(1 − 1
3d ))-

expander. Then MG is a d-disjunct matrix.

Proof. First we show that for any two columns in MG,
there are at most 2w

3d positions where both the columns
have a 1. This condition is equivalent to saying that
for any i 6= j ∈ [n], |ΓG({i}) ∩ ΓG({j})| ≤ 2εw, where
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ε = 1
3d . This condition in turn implied by the facts that

|ΓG({i, j})| ≥ 2w(1 − ε) and |ΓG({j})| = w. Finally,
note that every column in MG has weight w. Lemma 2.1
completes the proof. �

The probabilistic method gives the following:

Theorem D.1. There exist (n,w, t,K,w(1 − ε)) ex-
pander with t = O(K logN/ε2).

Theorem D.1 implies that there exists a d-disjunct
matrix with O(d2 log n) rows.

It is known that any d-disjunct matrix needs to have
Ω( d2

log d log n) rows [10, 11, 13]. Thus, Proposition D.1
implies the following lower bound:

Corollary D.1. Let G be a (n,w, t, 2, w(1 − ε)) ex-
pander. Then t = Ω

(
logn

ε2 log(1/ε)

)
.
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