3,485 research outputs found

    Future of smart cardiovascular implants

    Get PDF
    Cardiovascular disease remains the leading cause of death in Western society. Recent technological advances have opened the opportunity of developing new and innovative smart stent devices that have advanced electrical properties that can improve diagnosis and even treatment of previously intractable conditions, such as central line access failure, atherosclerosis and reporting on vascular grafts for renal dialysis. Here we review the latest advances in the field of cardiovascular medical implants, providing a broad overview of the application of their use in the context of cardiovascular disease rather than an in-depth analysis of the current state of the art. We cover their powering, communication and the challenges faced in their fabrication. We focus specifically on those devices required to maintain vascular access such as ones used to treat arterial disease, a major source of heart attacks and strokes. We look forward to advances in these technologies in the future and their implementation to improve the human condition

    A New Design of Capacitive Power Transfer Based on Hybrid Approach for Biomedical Implantable Device

    Get PDF
    This paper presents the development of a new design method of capacitive power transfer (CPT) which is based on hybrid concept for Biomedical Implants. This method is able to improve various issues found in the widely used CPT system that is bipolar CPT method. Based on the ability of this purposed, the simulation of the CPT system has been designed to prove an amount of power transferred through a layer of tissue. The design used to validate the suggested model which to powering implanted device, and it was performed with 3cm square plates, which have a layer of beef with the 5mm thickness in between 2 coupling plate. Power signal was generated by Class E zero voltage switching. The Class E zero voltage switching has been designed to generating alternate current with the 1MHz frequency appropriate to the hybrid CPT system specification.

    A Multi-Dimensional Analysis of a Novel Approach for Wireless Stimulation

    Get PDF
    The elimination of integrated batteries in biomedical implants holds great promise for improving health outcomes in patients with implantable devices. However, despite extensive research in wireless power transfer, achieving efficient power transfer and effective operational range have remained a hindering challenge within anatomical constraints. Objective : We hereby demonstrate an intravascular wireless and batteryless microscale stimulator, designed for (1) low power dissipation via intermittent transmission and (2) reduced fixation mechanical burden via deployment to the anterior cardiac vein (ACV, ∼3.8 mm in diameter). Methods : We introduced a unique coil design circumferentially confined to a 3 mm diameter hollow-cylinder that was driven by a novel transmitter-based control architecture with improved power efficiency. Results : We examined wireless capacity using heterogenous bovine tissue, demonstrating >5 V stimulation threshold with up to 20 mm transmitter-receiver displacement and 20° of misalignment. Feasibility for human use was validated using Finite Element Method (FEM) simulation of the cardiac cycle, guided by pacer phantom-integrated Magnetic Resonance Images (MRI). Conclusion : This system design thus enabled sufficient wireless power transfer in the face of extensive stimulator miniaturization. Significance : Our successful feasibility studies demonstrated the capacity for minimally invasive deployment and low-risk fixation

    Advances in Microelectronics for Implantable Medical Devices

    Get PDF
    Implantable medical devices provide therapy to treat numerous health conditions as well as monitoring and diagnosis. Over the years, the development of these devices has seen remarkable progress thanks to tremendous advances in microelectronics, electrode technology, packaging and signal processing techniques. Many of today’s implantable devices use wireless technology to supply power and provide communication. There are many challenges when creating an implantable device. Issues such as reliable and fast bidirectional data communication, efficient power delivery to the implantable circuits, low noise and low power for the recording part of the system, and delivery of safe stimulation to avoid tissue and electrode damage are some of the challenges faced by the microelectronics circuit designer. This paper provides a review of advances in microelectronics over the last decade or so for implantable medical devices and systems. The focus is on neural recording and stimulation circuits suitable for fabrication in modern silicon process technologies and biotelemetry methods for power and data transfer, with particular emphasis on methods employing radio frequency inductive coupling. The paper concludes by highlighting some of the issues that will drive future research in the field
    • …
    corecore