14,129 research outputs found

    What Makes a Good Plan? An Efficient Planning Approach to Control Diffusion Processes in Networks

    Full text link
    In this paper, we analyze the quality of a large class of simple dynamic resource allocation (DRA) strategies which we name priority planning. Their aim is to control an undesired diffusion process by distributing resources to the contagious nodes of the network according to a predefined priority-order. In our analysis, we reduce the DRA problem to the linear arrangement of the nodes of the network. Under this perspective, we shed light on the role of a fundamental characteristic of this arrangement, the maximum cutwidth, for assessing the quality of any priority planning strategy. Our theoretical analysis validates the role of the maximum cutwidth by deriving bounds for the extinction time of the diffusion process. Finally, using the results of our analysis, we propose a novel and efficient DRA strategy, called Maximum Cutwidth Minimization, that outperforms other competing strategies in our simulations.Comment: 18 pages, 3 figure

    Generalized Network Dismantling

    Full text link
    Finding the set of nodes, which removed or (de)activated can stop the spread of (dis)information, contain an epidemic or disrupt the functioning of a corrupt/criminal organization is still one of the key challenges in network science. In this paper, we introduce the generalized network dismantling problem, which aims to find the set of nodes that, when removed from a network, results in a network fragmentation into subcritical network components at minimum cost. For unit costs, our formulation becomes equivalent to the standard network dismantling problem. Our non-unit cost generalization allows for the inclusion of topological cost functions related to node centrality and non-topological features such as the price, protection level or even social value of a node. In order to solve this optimization problem, we propose a method, which is based on the spectral properties of a novel node-weighted Laplacian operator. The proposed method is applicable to large-scale networks with millions of nodes. It outperforms current state-of-the-art methods and opens new directions in understanding the vulnerability and robustness of complex systems.Comment: 6 pages, 5 figure

    Minimizing Seed Set Selection with Probabilistic Coverage Guarantee in a Social Network

    Full text link
    A topic propagating in a social network reaches its tipping point if the number of users discussing it in the network exceeds a critical threshold such that a wide cascade on the topic is likely to occur. In this paper, we consider the task of selecting initial seed users of a topic with minimum size so that with a guaranteed probability the number of users discussing the topic would reach a given threshold. We formulate the task as an optimization problem called seed minimization with probabilistic coverage guarantee (SM-PCG). This problem departs from the previous studies on social influence maximization or seed minimization because it considers influence coverage with probabilistic guarantees instead of guarantees on expected influence coverage. We show that the problem is not submodular, and thus is harder than previously studied problems based on submodular function optimization. We provide an approximation algorithm and show that it approximates the optimal solution with both a multiplicative ratio and an additive error. The multiplicative ratio is tight while the additive error would be small if influence coverage distributions of certain seed sets are well concentrated. For one-way bipartite graphs we analytically prove the concentration condition and obtain an approximation algorithm with an O(logn)O(\log n) multiplicative ratio and an O(n)O(\sqrt{n}) additive error, where nn is the total number of nodes in the social graph. Moreover, we empirically verify the concentration condition in real-world networks and experimentally demonstrate the effectiveness of our proposed algorithm comparing to commonly adopted benchmark algorithms.Comment: Conference version will appear in KDD 201

    Averting Robot Eyes

    Get PDF
    Home robots will cause privacy harms. At the same time, they can provide beneficial services—as long as consumers trust them. This Essay evaluates potential technological solutions that could help home robots keep their promises, avert their eyes, and otherwise mitigate privacy harms. Our goals are to inform regulators of robot-related privacy harms and the available technological tools for mitigating them, and to spur technologists to employ existing tools and develop new ones by articulating principles for avoiding privacy harms. We posit that home robots will raise privacy problems of three basic types: (1) data privacy problems; (2) boundary management problems; and (3) social/relational problems. Technological design can ward off, if not fully prevent, a number of these harms. We propose five principles for home robots and privacy design: data minimization, purpose specifications, use limitations, honest anthropomorphism, and dynamic feedback and participation. We review current research into privacy-sensitive robotics, evaluating what technological solutions are feasible and where the harder problems lie. We close by contemplating legal frameworks that might encourage the implementation of such design, while also recognizing the potential costs of regulation at these early stages of the technology

    Theories for influencer identification in complex networks

    Full text link
    In social and biological systems, the structural heterogeneity of interaction networks gives rise to the emergence of a small set of influential nodes, or influencers, in a series of dynamical processes. Although much smaller than the entire network, these influencers were observed to be able to shape the collective dynamics of large populations in different contexts. As such, the successful identification of influencers should have profound implications in various real-world spreading dynamics such as viral marketing, epidemic outbreaks and cascading failure. In this chapter, we first summarize the centrality-based approach in finding single influencers in complex networks, and then discuss the more complicated problem of locating multiple influencers from a collective point of view. Progress rooted in collective influence theory, belief-propagation and computer science will be presented. Finally, we present some applications of influencer identification in diverse real-world systems, including online social platforms, scientific publication, brain networks and socioeconomic systems.Comment: 24 pages, 6 figure
    corecore