2 research outputs found

    Low Complexity Reliability Based Message Passing Decoder Architecture For Non Binary LDPC Codes

    Get PDF
    Non-binary low-density parity-check (NB-LDPC) codes can achieve better error-correcting performance than their binary counterparts at the cost of higher decoding complexity when the codeword length is moderate. The recently developed iterative reliability-based majority-logic NB-LDPC decoding has better performance complexity tradeoffs than previous algorithms. This paper first proposes enhancement schemes to the iterative hard reliability-based majority-logic decoding (IHRB-MLGD). Compared to the IHRB algorithm, our enhanced (E)-IHRB algorithm can achieve significant coding gain with small hardware overhead. Then low-complexity partial-parallel NB-LDPC decoder architectures are developed based on these two algorithms.  Moreover, novel schemes are developed to keep a small proportion of messages in order to reduce the memory requirement without causing noticeable performance loss. In addition, a shift-message structure is proposed by using memories concatenated with variable node units to enable efficient partial-parallel decoding for cyclic NB-LDPC codes.  our proposed decoders have at least tens of times lower complexity with moderate coding gain loss

    Efficient symbol reliability based decoding for QCNB-LDPC codes

    No full text
    corecore