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Abstract: Non-binary low-density parity-check (NB-
LDPC) codes can achieve better error-correcting
performance than their binary counterparts at the cost
of higher decoding complexity when the codeword
length is moderate. The recently developed iterative
reliability-based majority-logic NB-LDPC decoding
has better performance complexity tradeoffs than
previous algorithms. This paper first proposes
enhancement schemes to the iterative hard reliability-
based majority-logic decoding (IHRB-MLGD).
Compared to the IHRB algorithm, our enhanced (E)-
IHRB algorithm can achieve significant coding gain
with small hardware overhead. Then low-complexity
partial-parallel NB-LDPC decoder architectures are
developed based on these two algorithms. Moreover,
novel schemes are developed to keep a small
proportion of messages in order to reduce the
memory requirement without causing noticeable
performance loss. In addition, a shift-message
structure is proposed by using memories
concatenated with variable node units to enable
efficient partial-parallel decoding for cyclic NB-
LDPC codes. our proposed decoders have at least
tens of times lower complexity with moderate coding
gain loss.

Index Terms—Iterative majority-logic decoding,
low-density parity-check (LDPC) codes, Tanner
Graph, Algorithms, non-binary, partial-parallel,
VLSI,

I. Introduction

NON-BINARY low-density parity-check
(NB-LDPC) codes defined over GF (q) (q>2) can
achieve higher coding gain than their binary
counterparts when the code length is moderate.
However, the decoding of NB-LDPC codes is much

more complicated since vectors of messages need to
be computed and stored. To reduce the complexity of
the belief propagation (BP) for NB-LDPC decoding,
frequency-domain, log-domain and mixed-domain
decoders were proposed. In addition, further
complexity reductions have been made in the
extended Min-sum (EMS) and Min-max algorithms
through approximating the computations involved in
non-binary BP. Decoder architectures based on the
EMS and Min-max algorithms can be found in. It
was reported that the implementation of a partial
parallel Min-max decoder for a (744, 653) NB-LDPC
code over GF(25) needs more than 47 000 slices on a
Xilinx Virtex-IIPro FPGA device and can only
achieve a throughput of 9.3 Mbps when 15 decoding
iterations are carried out. On the other hand, a binary
LDPC decoder for the WiMax standard needs less
than 2500 slices on a device of the same family to
achieve 28 Mbps.

Recently, two algorithms were developed
for decoding NB-LDPC codes: iterative hard
reliability-based majority-logic decoding (IHRB-
MLGD) and iterative soft reliability-based majority-
logic decoding (ISRB-MLGD). In these algorithms,
reliability messages are incorporated into majority-
logic decoding and improved through an iterative
process. Unlike previous BP-based algorithms, these
two algorithms require only simple check sum
computations over in the check node processing.
Hence, the memory required for storing messages can
be greatly reduced. As a result, these iterative
reliability-based majority-logic decoding algorithms
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can achieve effective complexity-performance
tradeoff. Compared to the ISRB algorithm, the IHRB
algorithm updates reliability messages based on the
hard decisions instead of probabilities of the received
symbols. Hence, at the cost of moderate coding gain
loss, the IHRB algorithm has much lower
computation complexity and memory requirement
than the ISRB algorithm. Nevertheless, mapping the
IHRB algorithm directly to hardware implementation
still leads to high complexity.

This paper first proposes an enhanced
(E-)IHRB algorithm. Through incorporating the
probability information from the channel into the
message initialization of the IHRB algorithm and
excluding the contribution of the same check node
from the variable-to-check (v-to-c) message, the E-
IHRB algorithm can bridge the performance gap
between the IHRB and ISRB algorithms with small
complexity overhead. Novel partial parallel
architectures are also developed in this paper to
efficiently implement the IHRB and E-IHRB
algorithms through algorithmic and architectural
optimizations. Many construction methods of NB-
LDPC codes lead to quasi-cyclic (QC) or cyclic
codes For QC codes, our IHRB decoder processes
one row of sub-matrices at a time, and the variable
node units (VNUs) are implemented by simple logic
when all ( q) messages in a vector are kept. Cyclic
NB-LDPC codes have the advantage that their
encoders can be implemented easily by linear
feedback shift registers. However, these cyclic codes
usually involve finite fields of high order, in which
case keeping all q messages leads to large memory
requirement. Novel schemes are developed in this
paper to store only a small proportion of the
messages without incurring noticeable performance
loss. In addition, a shift message decoder architecture
is proposed for cyclic NB-LDPC codes to enable
efficient partial-parallel processing. The message
shifting is accomplished through concatenating
memories with VNUs to reduce the area requirement.
It is non-trivial to extend the IHRB decoder
architecture to implement the E-IHRB algorithm
since recording the messages from check nodes may

lead to large memory overhead, especially when the
column weight of the code is not small.

The structure of this paper is as follows.
Section II introduces the IHRB algorithm for NB-
LDPC decoding. The proposed E-IHRB algorithm is
detailed in Section III. Then the IHRB and E-IHRB
decoder architectures are presented in Sections IV
and V, respectively. After complexity analyses and
comparisons are done in Section VI, conclusions are
drawn in Section VII.

II  . IHRB – MLD Algorithm

An LDPC code is a linear block code that
can be defined by the corresponding parity check
matrix H or the associated Tanner graph. In the
Tanner graph, a check (variable) node rep-resents a
row (column) of H, and the ith check node is
connected to the jth variable node if the
corresponding entry hi,j in  H is nonzero. To simplify
notations, this paper considers regular NB-LDPC
codes, whose H matrix has constant row weight dc

and constant column weight dv. To reduce the
decoder hardware complexity, QC, and cyclic NB-
LDPC codes can be constructed using the methods.
The H - matrix of a QCNB-LDPC code can be
divided into sub-matrices that are zero or shifted
identity matrices with nonzero entries replaced by
elements of GF(q) .For a cyclic NB-LDPC code, the
H matrix consists of a single circulant matrix whose
entries are elements of GF(q)  or a column of
circulant matrices.

Algorithm A : IHRB- MLGD Algorithm

Initialization : Rj,l
(0) =  r  if  Zj

(0) = l;

Rj,l
(0) =  0  if  Zj

(0) != l for  K = 0; Imax

A1: stop if Z(K) HT = 0 for  i = 0 to m-1  for J € Ni

A2 : ϭi,j = hi,j
-1 ∑u€Ni\j Zu

(k) hi,u

A3 :  if (ϭi,j = αl)  Rj,l
(k) = Rj

(k) +1

Rj,l
(k+1) =  Rj,l

(k)
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for  j = 0 to n-1

A4 : Zj
(K+1) =  field elements of  maxl Rj,l

(k+1)

In the IHRB algorithm, the reliability
measures of the received symbols are updated in each
iteration based on the hard-decision symbols.
Throughout this paper, the superscript (k) is added to
denote the values in the kth decoding iteration
whenever necessary. In addition, a vector of variables
with subscripts is also represented by the same
variable with deleted subscript. For a NB-LDPC code
of length n , let Z(k) = [ Z0

(K), Z1
(K), Z2

(K), …… Zn-

1
(K)]  be the hard decision vector of the received

symbols in the Kth decoding iteration,  and  z(0)

consists of the hard decisions made from the channel
output. Rj

(K) = [ Rj,0
(k),  Rj,1

(k), Rj,2
(k), ……… Rj,q-1

(k)]
is the reliability measure vector of the jth received
symbol,  representing the probabilities that the jth
received symbol equals each field element. Assume
that the  H matrix has m rows. Define ,

Ni  =  { j:  0 , 0 <j < n , hi,j / 0}

Mj  =  { i:  0 , 0 <i < m , hi,j / 0} and the { 0,

1,……….. q-1} set consists of all elements of GF(q)
.The  IHRB algorithm can be described by Algorithm
A

III. Enhanced IHRB – MLD Algorithm

One reason that the IHRB algorithm has
performance loss compared to the ISRB algorithm is
that the soft information is lost in the initialization of
the reliability easures: the reliability measure for the
hard-decision symbol is set to, while all other
measures in the same vector are set to zero.
Recording different initialization values does not cost
extra memory, if the word length is not changed.
Hence, the IHRB algorithm can be enhanced by
initializing the reliability measures according to the
probability information from the channel in a way
similar to that in the ISRB algorithm. Nevertheless,
to reduce the decoder hardware complexity, the
maximum reliability measure in each vector should

be set to a constant r  in the format of 2m – 1 (w € Z+)

as before , so that it does not need to be  stored , and
the Clipping can be Simplified as will be detailed.

Such initialization can be done first as Rj,l
(0) = | Uj,l

P |,  ( 0 < l  < q ) where p is a  constant that similar
effect as the U in the ISRB decoding. The Optimum
Value of P can be derived from simulations, and is
affected by the data format of reliability measures
and dynamic range of the symbol reliabilities from
the channel.

Algorithm B: E -IHRB- MLGD Algorithm

Initialization : Rj,l
(0) =  max (| |+ r – maxl ( )  ) if  Zj

(0)

= Zj
(0)

;

for  K = 0; Imax

B1: stop if Z(K) HT = 0 for  i = 0 to m-1  for J € Ni

B2 : ϭi,j
(k) = hi,j

-1 ∑u€Ni \j Zu
(k) hi,u

B3 :  if (ϭi,j = αl)  Rj,l
(k) = Rj,l

(k) +1

Rj,l
(k+1) =  Rj,l

(k)

for  j = 0 to n-1

B4 : Rj
(K+1)max = maxl Rj

(K+1)max

Zj
(K+1)max field elements of  maxl

Rj,l
(k+1)max

B5 : Rj
(K+1)max2 = second largest  Rj

(K+1)max

Zj
(K+1)max = field elements of  maxl

Rj,l
(k+1)max2

for i € Mj  if (ϭi,j
(k) = Zj

(K+1)  &

(Rj
(K+1)max < Rj

(K+1)max2 +1)

Zi,j
(K+1) = Zj

r(K+1)

else Zi,j
(K+1) = Zj

(K+1)
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IV. PARTIAL – PARALLEL ARCHITECTURES
FOR IHRB-MLGD

Since the E-IHRB algorithm is based on the
IHRB algorithm, this section presents architecture
design for the IHRB algorithm first. Then the
modifications needed to implement the E-IHRB
algorithm are   introduced in the next section.

Fully-parallel decoders require
overwhelming complexity for NB-LDPC codes that
are not very short. On the other hand, serial design
cannot achieve fast decoding speed. Compared to
random codes, these codes enable more efficient
partial-parallel processing due to the regularity in the
matrix. In this section, partial-parallel IHRB decoder
architectures are developed for these two types of
codes.

Fig : 1 IHRB-MLGD architecture for QCNB-LDPC
Codes

A. IHRB-MLGD Architecture for QCNB-LDPC
Codes

The  H matrix of a QCNB-LDPC code
consists of sub-matrices that are either zero or shifted
identity matrices with nonzero entries replaced by
finite field elements. In our design, one row of sub-
matrices of  H is processed at a time. Assume that H
consists  r x t  of sub-matrices of dimension (q-1) x

(q-1). If none of the sub_matrices is zero , then dc = t
and dv = t . The top level architecture of our proposed
IHRB decoder for QCNB-LDPC codes is shown in
Fig. 5(a). RAM Ri (1< i < q) stores reliability
measure vectors  R(q-1)b+i-1

(k) for b = 0,1,….,t-1  ,and
all the q measures in a vector are stored in the same
address location. A similar scheme is used to store
the hard-decision symbols in RAM z, except that
each RAM z consists of two blocks: one for Z(k) and
for  Z(k+1) . Using this storage scheme, the messages
for one block column (q-1 columns) of  H can be
accessed simultaneously.

The Z(k) for one block column are sent to the
q-1 check node units (CNUs) at a time after
permutation and multiplication. The permutation
block routes Z(K) to proper CNUs based on the
locations of the corresponding nonzero entries of H ,
and the multiplication block multiplies the nonzero
entries of H to Z(K) . To simplify computations, the ϭi,j

in step A2 can be rewritten as Z(k)
j + hi,j

-1∑u€N i Zu
(k) hi,u.

Accordingly, the check sum Si
(K) = ∑u€Ni Zu

(k) hi,u

only needs to be computed once for each check node,
and can be shared in computing ϭi,j with different j .
The CNUs compute these check sums using adder-
register loops. After t clock cycles, the check sums
are ready and loaded into the registers on the bottom
of CNUs, and the check sum computation for the
next block row of H  starts. The check sums are
multiplied by hi,j

-1 in the division block of Fig. 1 and
the products are reversely permutated before they are
added up with Zj(k) to compute ϭi,j in the VNUs,
whose architecture is shown in Fig. 2.
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Fig 2 : VNU architecture when all q messages are
kept.

One row of sub-matrices is processed at a
time in our design, and each sub-matrix has at most
one nonzero entry in each column. Hence, at most
one of the measures in each Rj

(k) vector can be added
by one each time. The multiplexor at the output of the
memory storing in Fig. 2 selects  Rj,l

(k) if ϭi,j = αl ,
and passes it to the adder to be increased by one. In
our design, the clipping is done at the same time as
the reliability measure updating, and can be
simplified since at most one measure in each vector is
increased by one at a time. If Rj,l

(k) the for which is
ϭi,j = αl already r before the addition by one, it
should remain unchanged and each of the other
nonzero reliability measures in

Fig 3: Computation Scheduling in IHRB – MLGD
for Cyclic Codes.

the same vector is subtracted by one. The outputs of
the second-row multiplexors in the top part of Fig. 2
are the updated and clipped reliability measures,
except Rj,l

(k) , which should come from the 2-to-1
multiplexor in the middle. To address this issue, a
binary decoder is employed to convert ϭi,j to a binary
tuple, which is only “1” in the bit if ϭi,j = αl . This
binary tuple is used as the select signals for the top-
row multiplexor.

According to the initialization in Algorithm
A and the clip-ping method adopted, the hard-
decision symbol can be only replaced by ϭi,j when

the corresponding Rj,l
(k) is already r before it is

increased by one. Hence, instead of being updated at
the end of each decoding iteration, which requires
finding the index of the largest reliability measure in
each vector, can be updated using a multiplexor as
shown in Fig. 2 during the processing of each block
row of .

The q-1 VNUs update the reliability
measure vectors and hard-decision symbols for one
block column at a time. Hence, the variable node
processing (A3 and A4 steps of Algorithm A) for a
block row of can be completed in clock cycles. These
computations can overlap with the check node
processing for the next block row. Hence, the
decoding with iterations Imax takes around  (1+ r
Imax)t clock cycles in this IHRB decoder for QCNB-
LDPC codes.

B. IHRB-MLGD Architecture for Cyclic NB-
LDPC Codes

This subsection considers the decoder
design for cyclic NB-LDPC codes whose matrix
consists of a single circulant matrix. Using the
construction methods , each row in a cyclic is
cyclically shifted previous row multiplied by w ,
where w is a primitive element of GF(q) . However,
the nonzero entries in a row appear at irregular
locations. If the CNU or VNU has multiple messages
to process at a time, the hardware complexity will
increase significantly. Hence, the decoder
architecture developed previously for QC codes can
not achieve efficient partial-parallel processing for
cyclic codes.

More over, a low-complexity VNU
architecture is developed so that only the nm < q
most reliable measures are kept for each vector
without causing noticeable performance loss.
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Fig 4 : IHRB – MLGD architecture for cyclic NB-
LDPC Codes.

Fig. 4 shows our proposed IHRB decoder
architecture for cyclic NB-LDPC codes. Assume that
there are nonzero entries In the first row of the cyclic
H , and they are located at positions p0 p1,…. Pd-1 . Our
design employs d  CNUs. Each CNU has the same
architecture as that shown in Fig.1, and computes a
check sum in d clock cycles. However CNUi , starts
one clock cycle after CNUi-1 in this cyclic decoder.
The hard-decision symbols Z(k) and Z(k+1) are stored
in two sets of shift registers, and are cyclically shifted
by one position to the left in each clock cycle.
Accordingly, all CNUs can read from the same  d
registers of Z(k) located at positions .  P0, P1- 1, ……,
Pd-1 –(d-1). As a result, the permutation network for
routing messages to CNUs is simplified. The
connections illustrated in Fig. 4 is for an example
code with  P0, P1, P2,….. = 0,3,7……. Each multiplexor
in this figure sends one of the d hard-decision
symbols to the connected CNU at a time after it is
multiplied by the corresponding entry in H . The
select signals of these multiplexors can be generated
by counters. Similarly, the counter for the  (i+1)th

multiplexor lags behind that for the ith multiplexor by
one clock cycle. It takes d clock cycles to compute
the first check sum in CNU0 . After that, one
additional check sum will be available from CNU0,

CNU1, in each clock cycle. More-over, after a CNU
finished computing the check sum for row i+d  , it
can start the check sum . The gray areas in this
figure indicate the clock cycles in which the check
sums for the  corresponding rows are ready.

V. PARTIAL – PARALLEL
ARCHITECTURES FOR E - IHRB -MLGD

Compared to the IHRB algorithm, there are
two enhancements in the E-IHRB decoding listed in
Algorithm B: the initialization and the extrinsic
message computation in the B5 and B6 steps. Using
different initial values does not require architectural
modifications in the decoder except when  r is
changed. Larger r may have more bits, and hence
lead to larger memory for storing the reliability
measures in the    E-IHRB de-coder. Moreover, in the
case that  nm < q messages are kept for each vector, the
least reliable entries need to be cleared at the end of
each decoding iteration to make rooms for symbols
that the decoding may converge to later. If is larger r ,
the entries with larger reliability measures need to be
cleared. Therefore, different testers may need to be
added for each entry of the vector in the VNU
architecture in Fig. 8. For example, when r  is
increased from 7 to 15 in the E-IHRB decoding for
the (255, 175) EG-LDPC code over , it was found
that the entries with reliability measure less than
equal to two need to be cleared to achieve almost the
same performance as  keeping all  q messages. In this
case, “ = 2  ?” testers are required in the VNUs.
Nevertheless, significant modifications need to be
made on the IHRB decoder to incorporate the B5 and
B6 steps. Zi,j

(K+1) are not stored in order to reduce the
memory requirement. Instead, and Zj

(k+1) and Zj
r(k+1)

are recorded, and one of them is picked to be Zi,j
(K+1)

when needed in decoding iteration (K+1). The
condition testing in Step B6 also requires the
knowledge of ϭi,j

(k) and     Rj
(K+1)max2 . Rj

(K+1)max

does not need to be stored since it is always r using
the initialization method in Algorithm B and
clipping. Similar to that in the IHRB decoding ϭi,j

(k)

, can be computed from the check sum S(k) and Zi,j
(k)

,which in turn needs to be selected from Zj
(k) and Zj

rk .
To stop this process from going into infinite depth,
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flags f Zi, j , , are stored to denote whether or has been
selected as Zi,j

(k) .These flags are updated with Step
B6 of Algorithm B in each iteration. To avoid finding
the largest and the second largest reliability measures
in each vector at the end of the decoding iteration,
Zj

(k+2) , Zj
r(k+2 ) and Rj

(k+2)max2 , Rj
r(k+2)max2 are also

updated with each addition to there liability measure
in Step B3 of iteration K+1 , and the updated values
need to be stored. Hence, the decoder needs to record
the hard-decision symbols and the second most likely
symbols for three consecutive iterations. On the other
hand, Step B6 only requires the information if
Rj

(k+2)max2 > Rj
(k+2)max – 1 . Therefore, instead of using

a second copy of memory to store Rj
(k+2)max2,flags frj ,

are recorded to indicate whether this inequality is
true. Table II summarizes the extra variables need to
be stored in order to implement the enhancement in
Step B5 and B6.

VI RESULTS

In the IHRB and E-IHRB decoders for the
(403, 226) QCNB-LDPC code over GF(25) , all q =
32 messages are kept for each vector. In addition, r =
7 is adopted for both decoders. Nevertheless, the
hard-decision symbols are stored in RAMs in QC
decoders. The larger number of hard-decision
symbols that need to be stored causes the memory
increase in the QC E-IHRB decoder compared to that
in the QC IHRB decoder. Similarly, there are more
logic gates in the QC E-IHRB decoder due to the
selector blocks, and modified VNUs. In total, the E-
IHRB decoder requires 28% more memory and 22%
more gates than the IHRB decoder for the (403, 226)
QCNB-LDPC code. The area overhead for
implementing the enhancement schemes for QC
codes is less than that for cyclic codes. This is mainly
be-cause that, in the case of QC codes, the extra hard-
decision sym-bols are stored in memories, which
usually cost less area than registers. To decode each
received word, both the IHRB and E-IHRB decoders
for the (403, 226) QC code require around (1
+ 8 x 25) x 13 = 2613 clock cycles. The critical paths
of both decoders have eleven gates

VII. CONCLUSION

This paper proposed enhancement schemes
to the IHRB de-coding algorithm for NB-LDPC
codes. The proposed schemes lead to significant
coding gain with small complexity overhead. In
addition, efficient architectures were developed for
both QC and cyclic NB-LDPC codes based on the
IHRB and E-IHRB algorithms. With moderate
performance loss, the proposed de-coders can achieve
at least tens of times higher efficiency com-pared to
previous designs based on the Min-max algorithm.
Future work will be devoted to further improving the
performance and reducing the hardware complexity
of MLGD-based algorithms for NB-LDPC decoding.
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