1,066 research outputs found

    Direct N-body Simulations

    Get PDF
    Special high-accuracy direct force summation N-body algorithms and their relevance for the simulation of the dynamical evolution of star clusters and other gravitating N-body systems in astrophysics are presented, explained and compared with other methods. Other methods means here approximate physical models based on the Fokker-Planck equation as well as other, approximate algorithms to compute the gravitational potential in N-body systems. Questions regarding the parallel implementation of direct ``brute force'' N-body codes are discussed. The astrophysical application of the models to the theory of relaxing rotating and non-rotating collisional star clusters is presented, briefly mentioning the questions of the validity of the Fokker-Planck approximation, the existence of gravothermal oscillations and of rotation and primordial binaries.Comment: 32 pages, 13 figures, in press in Riffert, H., Werner K. (eds), Computational Astrophysics, The Journal of Computational and Applied Mathematics (JCAM), Elsevier Press, Amsterdam, 199

    Probability density adjoint for sensitivity analysis of the Mean of Chaos

    Full text link
    Sensitivity analysis, especially adjoint based sensitivity analysis, is a powerful tool for engineering design which allows for the efficient computation of sensitivities with respect to many parameters. However, these methods break down when used to compute sensitivities of long-time averaged quantities in chaotic dynamical systems. The following paper presents a new method for sensitivity analysis of {\em ergodic} chaotic dynamical systems, the density adjoint method. The method involves solving the governing equations for the system's invariant measure and its adjoint on the system's attractor manifold rather than in phase-space. This new approach is derived for and demonstrated on one-dimensional chaotic maps and the three-dimensional Lorenz system. It is found that the density adjoint computes very finely detailed adjoint distributions and accurate sensitivities, but suffers from large computational costs.Comment: 29 pages, 27 figure

    Nonlinear stochastic modeling with Langevin regression

    Get PDF
    Many physical systems characterized by nonlinear multiscale interactions can be effectively modeled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behavior are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behavior to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using both forward and adjoint Fokker-Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can effectively learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by colored noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply the proposed method to experimental measurements of a turbulent bluff body wake and show that the statistical behavior of the center of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise.Comment: 30 pages, 13 figure
    corecore