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Abstract

Special high-accuracy direct force summation N -body algorithms and their relevance for the simulation of the dynamical
evolution of star clusters and other gravitating N -body systems in astrophysics are presented, explained and compared
with other methods. Other methods means here approximate physical models based on the Fokker–Planck equation as
well as other, approximate algorithms to compute the gravitational potential in N -body systems. Questions regarding the
parallel implementation of direct “brute force” N -body codes are discussed. The astrophysical application of the models
to the theory of relaxing rotating and non-rotating collisional star clusters is presented, briey mentioning the questions of
the validity of the Fokker–Planck approximation, the existence of gravothermal oscillations and of rotation and primordial
binaries. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

“The dynamical evolution of an isolated spherical system composed of very many mass points
has an appealing simplicity. The Newtonian laws of motion are exact, and all average quantities are
functions only of radial distance r and time t. Nevertheless, it is only recently, with the availability
of fast computers, that a systematic understanding of how such systems develop through time has
emerged. Since these idealized systems should provide a very good approximation for globular
clusters in this and other galaxies, the theory of their development is an important part of astronomy
as well as an interesting branch of theoretical particle dynamics.” [77]
Once celestial mechanics was one of the most important �elds of astronomy. Nowadays astro-

physics has become much wider in scope, including �elds like stellar astrophysics and gas and
plasma dynamics of interstellar matter. For some objects, however, the pure dynamics of gravitating
mass points still provides an excellent description of the global dynamical evolution or gives at
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least the dominating background in which the gaseous or baryonic matter evolves. Such objects are,
starting from the large scale, the entire universe itself, some evolutionary phases of galaxies and
galactic nuclei, globular and open-star clusters, and last but not least our planetary system. Globu-
lar star clusters are gas-free systems with some 105 stars, orbiting around our own [14] and other
galaxies [70].
This article aims at the complex interplay of thermodynamic processes like heat conduction and

relaxation with the physics of self-gravitating systems and the stochastic nature of star clusters having
�nite particle number N , and the speci�c computational and physical models used for the numerical
simulation of the dynamical evolution of star clusters under these processes on the computer. Globular
clusters are a very good laboratory for relaxation processes in discrete particle systems, because
their dynamical and relaxation timescales are well separated from each other and from the life-
time of the cluster and of the universe as a whole. In this article the methods appropriate to
model their evolution are in the focus. Other kinds of N -body simulations are useful for example
for hydrodynamics (“smoothed particle hydrodynamics”), galaxy dynamics (“collisionless systems”)
or cosmological N -body simulations of structure formation in the universe and are covered by other
articles in this volume. The main distinction of those from the models presented here, is that the
dynamics of systems dominated by two-body relaxation (“collisional systems”) requires typically
very high accuracies (typical energy error per crossing time �E=E¡ 10−5 or smaller) over very
long physical integration times (thousands of crossing times). The term “collisional” here always
refers to systems, whose evolution is inuenced by relaxation through elastic two- or more-body
encounters, not to physical collisions, where two stars collide and merge or disrupt each other. As a
consequence of the high accuracy requirements for collisional N -body simulations, commonly known
algorithms like the leap-frog time integration and the TREE-method to compute the gravitational po-
tential of a particle distribution, are not e�cient to use here; the use of high-order time-integration
schemes and “brute-force” algorithms to compute the potential are more e�cient, as will be argued
below.
This article is organized as follows: this introduction is followed by a section on the approximate

models of self-gravitating collisional N -body systems, after which practical and theoretical aspects
of the corresponding highly accurate direct N -body simulations are presented. Finally, astrophysical
applications of the methods and relevant questions under study are presented.
Let us begin with the de�nition of some useful time scales. A typical particle crossing time tcr in

a star cluster is

tcr =
rh
�h
; (1)

where rh is the radius containing 50% of the total mass and �h is a typical velocity associated with
the root mean square random motion (velocity dispersion) taken at rh. If virial equilibrium prevails,
we have �2h ≈ GMh=rh (where the sign ≈ here and henceforth means “approximately equal” or “equal
within an order of magnitude”), thus

tcr ≈
√

r3h
GMh

: (2)

This is equal to the dynamical timescale, which is also used for example in the theory of stellar
structure and evolution. Global dynamical adjustments of the system, like oscillations, are connected
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with this timescale. Taking the square of equation 2 yields t2cr ≈ r3h=(GMh) which is related to
Kepler’s third law, because the orbital velocity in a Keplerian point mass potential has the same
order of magnitude as the velocity dispersion in virial equilibrium.
Unlike most laboratory gases stellar systems are not usually in thermodynamic equilibrium, neither

locally nor globally. Radii of stars are usually extremely small relative to the average interparticle
distances of stellar systems (e.g. the radius of the sun is r� ≈ 1010 cm, a typical distance between
stars in our galactic neighbourhood is of the order of 1018 cm). Only under rather special conditions
in the centres of galactic nuclei and during the short high-density core collapse phase of a globular
cluster, stellar densities might become large enough that stars come close enough to each other to
collide, merge or disrupt each other.
Therefore it is extremely unlikely under normal conditions that two stars touch each other during

an encounter; encounters or collisions usually are elastic gravitative scatterings. Fairly generally the
mean interparticle distance is large compared to p0=Gm=�2, which is the impact parameter for a 90

◦

deection in a typical encounter of two stars of equal mass m, where the relative velocity at in�nity
is

√
2�, with local 1D velocity dispersion �: Thus most encounters are small-angle deections. The

relaxation time trx is de�ned as the time after which the root mean square velocity increment due
to such small angle gravitative deections is of the same order as the initial velocity dispersion of
the system. We use the local relaxation time as de�ned by [49]

trx =
9

16
√
�

�3

G2m� ln(N )
: (3)

G is the gravitational constant, � the mean stellar mass density, N the total particle number, and  a
parameter of order unity, which results from an integration over all possible impact parameters for
a two-body encounter. Taking the linear system dimension as a maximum impact parameter yields
=0:4 [77]. Measurements in direct star by star evolutionary simulations of stellar systems are more
in favour of = 0:11 [22,23], which is the value used throughout this article.
Assuming virial equilibrium a fundamental proportionality turns out:

trx
tdyn

˙
N

ln(N )
(4)

(cf. e.g. [77]). As a result, for very large N , dynamical equilibrium is attained much faster than
thermodynamic equilibrium. If one assumes a purely kinetic temperature de�nition, it ensues that in
star clusters the temperatures (or velocity dispersions) can remain di�erent for di�erent coordinate
directions over many dynamical times. For example, in a spherical system, the radial and tangential
velocity dispersion would be di�erent, which is denoted as anisotropy.
There are several reasons to believe that anisotropy is present and important for the dynamical

evolution of astrophysical star clusters. Many observations are matched better by models including
anisotropy [55], and all direct simulations exhibit the formation of anisotropy under very general
conditions, independent of the underlying physical cause driving the system’s evolution. Bettwieser
and Spurzem [8] showed in the context of a gas dynamical model of star clusters, that isotropy
remains only under very special conditions (linear pro�les of velocities of mass and energy transport),
and a similar study [36] gives the same result for axisymmetric collapsing gaseous systems.
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2. Approximate models

2.1. Fokker–Planck approximation

Unfortunately, the direct simulation of such rich stellar systems as globular clusters with star-by-star
modelling is not yet possible. The gap between the largest useful N -body models with particle num-
bers of the order of a few 104 particles and the median globular star cluster (N ∼ 5× 105) can only
be bridged at present by use of theory. There are two main classes of theory: (i) Fokker–Planck
models, which are based on the Boltzmann equation of the kinetic theory of gases [13,72,29,15], and
(ii) gas models [54,79,32], which can be thought of as a set of moment equations of the Fokker–
Planck model.
These simpli�ed models are the only detailed models which are directly applicable to large systems

such as globular clusters. But their simplicity stems from many approximations and assumptions
which are required in their formulation. Examples are the assumptions of spherical symmetry, which
contradicts the asymmetry of the galactic tidal �eld, or statistical estimates of cross sections for the
formation of close binaries by three-body or dissipative (tidal) two-body encounters, and for their
subsequent gravitational interactions with �eld stars. Such processes play a dominant role to reverse
core collapse of globular clusters, which otherwise would inevitably lead to a singular density pro�le
with in�nite density at the centre [9,19,41].
The Fokker–Planck approximation truncates the so-called B2GKY hierarchy of kinetic equations

(see [10]) at lowest order assuming that for most of the time all particles are uncorrelated with
each other and only coupled via the smooth global gravitational potential. Correlations only play a
role as a sequence of uncorrelated two-body encounters. Instead of determining a general correlation
function one resorts to a phenomenological description of the e�ects of collisions by computing
di�usion coe�cients directly from the known solution of the two-body problems. Di�usion coe�-
cients D(�vi) and D(�vi�vj) denote the average rate of change of vi and vivj due to the cumulative
e�ect of many small angle deections during two-body encounters. Let m; C and mf; Cf be the
mass and velocity of a star from a test and �eld star distribution, respectively (both distributions
can but need not to be the same). In Cartesian geometry the di�usion coe�cients are de�ned
by

D(�vi) = 4�G2mfln�
@h(C)
@vi

; D(�vi�vj) = 4�G2mfln�
@2g(C)
@vi@vj

; (5)

where f is the phase-space density of stars (briey: distribution function) and g; h are the Rosen-
bluth potentials de�ned in [76]

h(C) = (m+ mf)
∫

f(Cf)
|C− Cf| d

3Cf; g(C) = mf
∫
f(Cf)|C− Cf| d3Cf: (6)

Note that provided the distribution function f is given in terms of a convenient polynomial series as
in Legendre polynomials, the Rosenbluth potentials can be evaluated analytically to arbitrary order,
as was seen already in [76], see for a modern rederivation and its use for star cluster dynamics
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[26,82]. With these results we can �nally write down the local Fokker–Planck equation in its standard
form for the Cartesian coordinate system of the vi:

@f
@t
+ Ci

@f
@ri
+ Ċi

@f
@Ci

=
(
@f
@t

)
enc
; (7)

(
@f
@t

)
enc
=−

3∑
i=1

@
@vi
[f(C)D(�vi)] +

1
2

3∑
i; j=1

@2

@vi@vj
[f(C)D(�vi�vj)]: (8)

The subscript “enc” should refer to encounters, which are the driving force of two-body relaxation.
Still Eq. (7) is a six-dimensional integro-di�erential equation; its direct numerical simulation in stellar
dynamics can presently only be done by further simpli�cation. First Jeans’ theorem is applied and f
transformed into a function of the classical integrals of motion of a particle in a potential under the
given symmetry, as e.g. energy E and modulus of the angular momentum J 2 in a spherical potential
or E and z-component of angular momentum Jz in axisymmetric coordinates. Thereafter the Fokker–
Planck equation can be integrated over the accessible coordinate space for any given combination
of constants of motion and the orbit-averaged Fokker–Planck equation ensues. By transformation
from vi to E and J and via the limits of the orbital integral the potential enters both implicitly and
explicitly. In a two-step scheme alternatively solving the Poisson- and Fokker–Planck equation a
direct numerical solution is obtained [12,15,85–87,18]. One of the main uncertainties in this method
is that for non-spherical mass distributions the orbit structure in the system may depend on unknown
non-classical third integrals of motion which are neglected.

2.2. Anisotropic gaseous model

The local Fokker–Planck equation (7) is utilized in another way for gaseous or conducting sphere
models of star clusters. Integrating it over velocity space with varying powers of the velocity coor-
dinates yields a system of equations in the spatial coordinates; the local approximation is used in
the sense that the orbit structure of the system is not taken into account, di�usion coe�cients and
all other quantities are assumed to be well de�ned just as a function of the local quantities (density,
velocity dispersions and so on). The system of moment equations is truncated in their order by a
phenomenological equation of heat transfer. Such approach has been suggested in [56,33] and gen-
eralized to anisotropic systems in [7,8,54], and for a presentation of the recent model see e.g. [26].
In the following the derivation of the model equations is described.

2.2.1. The “left-hand sides”
In spherical symmetry, polar coordinates r; �; � are used and t denotes the time. The vector

C = (vi); i = r; �; �; denotes the velocity in a local Cartesian coordinate system at the spatial point
r; �; �. For brevity, u=vr; v=v�; w=v� is used. The distribution function f, which due to spherical
symmetry is a function of r; t; u; v2 + w2 only, is normalized according to

�(r; t) =
∫
f(r; u; v2 + w2; t) du dv dw; (9)

where �(r; t) is the mass density; if m denotes the stellar mass, we get the particle density n= �=m.
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Then

�u=
∫
uf(r; u; v2 + w2; t) du dv dw (10)

is the bulk radial velocity of the stars. Note that for the analogously de�ned quantities �v and �w we
have �v= �w = 0.
In order to go ahead with the anisotropic gaseous model equations we now turn back to the

left-hand side of the Fokker–Planck equation (7), which is the collisionless Boltzmann or Vlasov
operator. For practical reasons, we prefer local Cartesian velocity coordinates for the left-hand side
whose axes are oriented towards the r; �; � coordinate space directions. With the Lagrange function

L= 1
2(ṙ

2 + r2�̇ 2 + r2 sin2 � �̇2)− �(r; t) (11)

the Euler–Lagrange equations of motion for a star moving in the cluster potential � become

u̇=−@�
@r
+
v2 + w2

r
; v̇=−uv

r
+

w2

r tan �
; ẇ =−uw

r
− vw
r tan �

: (12)

The complete local Fokker–Planck equation, derived from Eq. (7), attains the form

@f
@t
+ u

@f
@r
+ u̇

@f
@u
+ v̇

@f
@v
+ ẇ

@f
@w

=
(
@f
�t

)
enc
; (13)

where the term subscribed by “enc” denotes the terms involving di�usion coe�cients as in Eq. (8).
Moments 〈i; j; k〉 of f are de�ned in the following way (all integrations range from −∞ to ∞):

〈0; 0; 0〉 :=�=
∫
f du dv dw; 〈1; 0; 0〉 := �u=

∫
uf du dv dw; (14)

〈2; 0; 0〉 :=pr + � �u 2 =
∫
u2f du dv dw; (15)

〈0; 2; 0〉 :=p� =
∫
v2f du dv dw; 〈0; 0; 2〉 :=p� =

∫
w2f du dv dw; (16)

〈3; 0; 0〉 :=Fr + 3 �upr + �u 3 =
∫
u3f du dv dw; (17)

〈1; 2; 0〉 :=F� + �up� =
∫
uv2f du dv dw; (18)

〈1; 0; 2〉 :=F� + �up� =
∫
uw2f du dv dw: (19)

Note that the de�nitions of pi and Fi are such that they are proportional to the random motion of
the stars. Due to spherical symmetry we have p� = p� = :pt and F� = F� = :Ft=2. By pr = ��2r
and pt = ��2t the random velocity dispersions are given, which are closely related to observables in
globular star clusters and galaxies. It is convenient to de�ne velocities of energy transport by

vr =
Fr
3pr

+ u; vt =
Ft
2pt

+ u: (20)



R. Spurzem / Journal of Computational and Applied Mathematics 109 (1999) 407–432 413

By multiplication of the Fokker–Planck equation (13) with various powers of u; v; w we get up
to second order the following set of moment equations (for a detailed derivation in the here used
variables see [78], bar for �u dropped in the following):

@�
@t
+
1
r2
@
@r
(r2u�) = 0; (21)

@u
@t
+ u

@u
@r
+
GMr

r2
+
1
�
@pr
@r

+ 2
pr − pt
�r

= 0; (22)

@pr
@t
+
1
r2
@
@r
(r2upr) + 2pr

@u
@r
+
1
r2
@
@r
(r2Fr)− 2Ft

r
=

(
�pr
�t

)
enc; bin3

; (23)

@pt
@t
+
1
r2
@
@r
(r2upt) + 2

ptu
r
+
1
2
1
r2
@
@r
(r2Ft) +

Ft
r
=

(
�pt
�t

)
enc; bin3

: (24)

The terms labeled with “enc” and “bin3” symbolically denote the collisional terms resulting from
the moments of the right-hand side of the Fokker–Planck equation (8) and an energy generation by
formation and hardening of three-body encounters. Both will be discussed below. With the de�nition
of the mass Mr contained in a sphere of radius r

@Mr=@r = 4�r2� (25)

the set of Eqs. (22)–(24) is equivalent to gas dynamical equations coupled with Poisson’s equation.
Since moment equations of order n contain moments of order n + 1, it is necessary to close the
system of the above equations by an independent closure relation. Here we choose the heat conduction
closure, which consists of a phenomenological ansatz in analogy to gas dynamics. It was �rst used
(restricted to isotropy) in [56]. It is assumed that heat transport is proportional to the temperature
gradient, where we use for the temperature gradient an average velocity dispersion �2 =(�2r +2�

2
t )=3

and assume vr = vt (this latter closure was �rst introduced by [8]). Therefore, the last two equations
to close our model are

vr − u+ �
4�G�trx

@�2

@r
= 0; vr = vt: (26)

With Eqs. (22)–(26) we have now seven equations for our seven dependent variables Mr; �;
u; pr; pt; vr; vt .

2.2.2. Binary heating
It was already early realized that in a star cluster with single stars under high-density conditions,

one or more strongly bound binaries form, which could dominate the further evolution [35,4]. This
is a contradiction to the basic assumption underlying the Fokker–Planck equation, that the only
correlations in the system are those produced by a sequence of uncorrelated small-angle gravitational
encounters. Nevertheless, Bettwieser and Sugimoto [9] introduced a phenomenological heat source
into their gaseous model equations, in order to describe the input of random kinetic energy (“heat”) to
the cluster by formation and hardening of so-called three-body binaries. The ansatz for the functional
form of the heating term has been clari�ed and more throughly discussed in [27,34]. They describe
a simple estimate for the rate of formation of binaries by close three-body encounters of single stars;
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in subsequent superelastic scatterings between the formed binary and �eld stars the binary will on
average become harder, provided its binding energy is large compared to the mean temperature of
the surrounding single stars. Surplus kinetic energy taken from the gravitational binding energy of
the binary members goes to the �eld star and thus provides a heating source for the core of the
cluster. There is an upper limit of the binary binding energy given by the condition that the recoil
on the binary in a typical superelastic scattering due to conservation of linear momentum in the
process leads to escape of the binary. As a result each binary after its formation supplies a certain
amount of energy by three-body encounters to the system until it escapes. The resulting heating term
is (isotropic binary heating assumed):(

�pr
�t

)
bin3
= 2

3Cbmn
3�3

(
Gm
�2

)5
;

(
�pt
�t

)
bin3
=

(
�pr
�t

)
bin3
: (27)

Here a simple estimate using gravitational focusing and the probability that three particles come
together have been employed. Cb is a constant of proportionality which is expected to have a value
between 75 and 90 for an equal mass system; for more details see the above cited papers.

2.2.3. The “right-hand sides”
All right-hand sides of the moment equations (22)–(24) are calculated by multiplying the right-

hand side (the encounter term) of the Fokker–Planck equation as it occurs in Eq. (8) with the
appropriate powers of u; v and w and integrating over velocity space. There is only one nontrivial
encounter term to be determined for the collisional decay of anisotropy. It is self-consistently com-
puted by assuming a certain Legendre series evaluation for f up to second order (i.e., including
anisotropy) in the Appendix in [26], the result being (pa = pr − pt)(

�pa
�t

)
enc
=−pa

ta
; ta =

10
9
trx; trx =

9
16
√
�

�3

G2m� ln(N )
: (28)

ta de�ned in the above equation denotes the characteristic decay time of anisotropy; trx is equivalent
to the standard two-body relaxation time. The particular factors applied to it originate unambiguously
from the Fokker–Planck collisional term evaluation with the assumption of a certain normalization
and functional form of f by a Legendre series. The procedure can be thoroughly followed in [49].
For the above result terms quadratic in pa have been omitted. Comparisons with direct N -body
simulations suggest a more general ansatz(

�pa
�t

)
enc
=− pa

�ata
(29)

and it is shown that �a = 0:1 provides the best results [26]. Section 4 describes some examples
how well the gaseous and Fokker–Planck models describe a star cluster’s evolution as compared
to a direct N -body simulation. There is no other way to check the theoretical models on the
Fokker–Planck equation, because the timescale for exponential instability and deterministic chaos
to occur in a self-gravitating star cluster consisting of many stars of equal or at least similar mass
is of the same order as a crossing time [28]. There is no analytical or semianalytical general so-
lution of the N -body problem available in that case for the unperturbed problem. In contrast to
this in the case of solar system studies there is a semianalytic secular theory [50] to be com-
pared with the direct orbit integrations (see, e.g., [51]). Here, for the star cluster case, we only
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can rely on the comparison of the numerical solutions obtained from di�erent physical models,
as there are direct N -body integrations and models based on the Fokker–Planck approximation.

3. Direct N -body simulations — methods and algorithms

3.1. Introduction — density and potential computation

To integrate the orbits of particles in time under their mutual gravitational interaction the total
gravitational potential at each particle’s position is required. Poisson’s equation in integral form gives
the potential � generated at a point in coordinate space r due to a smooth mass distribution �(r)

�(r) =−G
∫

�(r′)
|r′ − r| d

3r′: (30)

There are two fundamentally di�erent methods to de�ne the density distribution as a function of a
given particle distribution. The �rst is based on a mesh in coordinate space; particles are sampled
on the mesh and their mass divided by the cell volume, which provides a local density. This method
called particle mesh requires for good statistics a su�cient number of particles in each cell. There
is no or very little intrinsic particle–particle relaxation with this method, but there is relaxation of
particle energies due to the �nite resolution of the mesh (see [38], and for a more recent cosmological
application compare [44] and references therein). Re�nements, by which particles are smeared out by
low-order interpolation formulae (e.g. cloud-in-cell, CIC) or the acceleration is interpolated within
the cells (e.g. Superbox [20]) are possible and reduce mesh relaxation.
The second method is based on the particles itself. A kernel function W (x; h) is de�ned, normalized

by
∫
W d3x=1, where h describes a typical length scale over which the inuence of a particle decays.

Therewith a sampled density �s is de�ned in a mesh-free way as

�s(r) =
∫
W (r − r′; h)�(r′) d3r′; (31)

where h is a characteristic smoothing length. A discrete particle distribution is given by �(r′) =∑
�(r − rj) with N particles distributed at positions rj. Hence we get a sampled density from the

discrete particle distribution as

�s(r) =
N∑
j=1

mjW (r − r′; h): (32)

As an estimate for the density and other thermodynamic quantities this method is used by “smoothed
particle hydrodynamics” simulations [71], using kernel functions W with compact support, which
means they are non-zero only in a bounded volume. Here, it is not intended to explain this further,
the reader is referred to the literature and other papers of this volume. If one takes a �-function
for the kernel as well and puts this into the integral Poisson equation (30) Newton’s law turns out
again:

�(r) =−G
N∑
j=1

mj
|r − rj| : (33)
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Certainly, this could have been written down immediately, but the above description makes it easier
to understand the relation of the direct potential summation to the other methods. In the following,
the prototype N -body integration method using the above “brute-force” method, in a speci�c form
called the Hermite scheme [60], shall be described in some more detail. It is the most commonly used
method in the �eld of globular cluster dynamics and other studies requiring very high accuracies.

3.2. The Hermite scheme

Assume a set of N particles with positions ri(t0) and velocities Ci(t0) (i = 1; : : : ; N ) is given at
time t = t0, and let us look at a selected test particle at r = r0 = r(t0) and C = C0 = C(t0). Note
that here and in the following the index i for the test particle i and also occasionally the index 0
indicating the time t0 will be dropped for brevity; sums over j are to be understood to include all j
with j 6= i, since there should be no self-interaction. Accelerations a0 and their time derivatives ȧ0
are calculated explicitly:

a0 =
∑
j

Gmj
Rj
R3j
; ȧ0 =

∑
j

Gmj

[
Vj
R3j

− 3(Vj · Rj)Rj
R5j

]
; (34)

where Rj := r − rj; Vj := C− Cj; Rj :=|Rj|; Vj := |Vj|. By low-order predictions,
xp(t) = 1

6(t − t0)3ȧ0 + 1
2(t − t0)2a0 + (t − t0)C+ x; (35)

Cp(t) = 1
2(t − t0)2ȧ0 + (t − t0)a0 + C; (36)

new positions and velocities for all particles at t ¿ t0 are calculated and used to determine a new
acceleration and its derivative directly according to Eq. (34) at t= t1, denoted by a1 and ȧ1. On the
other hand, a1 and ȧ1 can also be obtained from a Taylor series using higher derivatives of a at
t = t0:

a1 = 1
6(t − t0)3a(3)0 + 1

2(t − t0)2a(2)0 + (t − t0)ȧ0 + a0; (37)

a1 = 1
2(t − t0)2a(3)0 + (t − t0)a(2)0 + ȧ0: (38)

If a1 and ȧ1 are known from direct summation (from Eq. (34) using the predicted positions and
velocities) one can invert the equations above to determine the unknown higher-order derivatives of
the acceleration at t = t0 for the test particle:

1
2a
(2) =−3 a0 − a1

(t − t0)2 −
2ȧ0 + ȧ1
(t − t0) ; (39)

1
6a
(3) = 2

a0 − a1
(t − t0)3 −

ȧ0 + ȧ1
(t − t0)2 : (40)

This is the Hermite interpolation, which �nally allows to correct positions and velocities at t1 to
high-order from

x(t) = xp(t) + 1
24 (t − t0)4a(2)0 + 1

120 (t − t0)5a(3); (41)

C(t) = Cp(t) + 1
6(t − t0)3a(2)0 + 1

24 (t − t0)4a(3)0 : (42)
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Fig. 1. The relative energy error as the function of the number of steps. A time-step criterion using di�erences between
predicted and corrected values is used, di�erent from Eq. (43). Dotted curves are for Hermite schemes, solid curves for
Aarseth schemes. The stepnumber p denotes the order of the integrator. From [57].

Taking the time derivative of Eq. (42) it turns out that the error in the force calculation for this
method is O(�t4), as opposed to the widely used leap-frog schemes, which have a force error of
O(�t2). Additional errors induced by approximate potential calculations (particle mesh or TREE)
create potentially even larger errors than that. In Fig. 1, however, it is shown that the above Hermite
method used for a real N -body integration sustains an error of O(�t4) for the entire calculation.
Many persons in the world know as Aarseth scheme (in particular the code version NBODY5 [1])
an integrator of the same order as the Hermite scheme, but using only accelerations on four time
points instead of a and ȧ on two time points. As is shown in [57], the Aarseth scheme is O(�t4) as
well, but for the same number of time steps the absolute value of the energy error (not its slope) is
clearly smaller in the Hermite scheme. This means that for a given energy error the Hermite scheme
allows timesteps which are larger by some factor of order unity depending on the parameters of
the system under study. The Hermite scheme has been commonly adopted during the past years,
because it needs less memory, and allows slightly larger timesteps. More importantly, after the addi-
tion of a hierarchical (as opposed to individual) time step scheme it is well suited for parallelization
on modern special and general purpose high performance computers [81]. The timestep scheme will
be discussed now.

3.3. Choice of timesteps — parallelization

Aarseth [1] provides an empirical timestep criterion

�t =

√
�

|a||a(2)|+ |ȧ|2
|ȧ||a(3)|+ |a(2)|2 : (43)
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The error is governed by the choice of �, which in most practical applications is taken to be �=0:01–
0.04. It is instructive to compare this with the inverse square of the curvature � of the curve a(t)
in coordinate space

1
�2
=
1 + |ȧ|2
|a(2)|2 : (44)

Clearly, under certain conditions the time step choice Eq. (43) becomes similar to choosing the
timestep according to the curvature of the acceleration curve; since it was determined just empirically,
however, it can not generally be related to the curvature expressed above. In [57] a di�erent time
step criterion has been suggested, which appears simpler and more straightforwardly de�ned, and
couples the timestep to the di�erence between predicted and corrected coordinates. The standard
Aarseth time step criterion (43) has been used in most N -body simulations so far (but compare the
discussion in [84]).
Since the position of all �eld particles can be determined at any time by the low-order pre-

diction (36), the timestep of each particle (which determines the time at which the corrector (42)
is applied) can be freely chosen according to the local requirements of the test particle; the
additional error induced due to the use of only predicted data for the full N sums of
Eq. (34) is negligibly small, for the bene�t of not being forced to keep all particles in lockstep. Such
an individual time step scheme is in particular for non-homogeneous systems very advantageous, as
was quantitatively pointed out in [61]. Particles in the high-density core of star clusters need to be
updated much more often than particles on orbits very far from the centre. They show that the gain
in computational speed due to the individual time step scheme (as compared to a lockstep scheme
where all particles share the minimum required time step) is of the order N 1=3 for homogeneous and
N 1 for strongly spatially structured systems; we show their results as Figs. 2 and 3.
For the purpose of vectorization and parallelization it is better not to have the particles continuously

distributed on a time axis. Consequently, Makino [58] uses a hierarchical scheme, still on the basis
of Eq. (43), but a change of the timestep is considered only if that equation yields a variation
of �t compared to the last step by more than a factor of 2 (increase or decrease). If this is the
case a variation by 2 is applied only. Thus, in model units all timesteps are selected from the set
{2−i | i = 0; : : : ; imax} with k = imax determined by the condition that �tmin¿ 2−imax for the minimum
timestep �tmin determined from Eq. (43). For core collapse simulations of star clusters of a few ten
thousand particles imax goes up to about 20; empirically and theoretically [61] �tmin ˙ N−1=3, so for
large N imax becomes larger, however, on the other hand, how large imax grows for �xed N depends
on the selected criteria for so-called KS regularisation of perturbed two-body motion (see below).
The implementation of the block step scheme indeed uses an even stronger condition that the above
described one; it is demanded that not only the time steps, but also the individual accumulated
times of each particles are commensurate with the timestep itself. This ensures that for any particle
i and any time Ti = ti + �ti all particles with �tj ¡�ti have for their own time Tj = tj + �tj = Ti,
where the last equality is the nontrivial one. Such procedure is important for the parallelization of
the algorithm. For example, it has as a consequence that at the big timesteps always huge groups
of particles are due for correction, sometimes even all particles (at the largest steps). Such scheme
allows an e�cient parallelization of all operations necessary for calculation of a and ȧ and for the
update of particle positions and velocities (corrections). Special purpose computers have been built
tailored to the Hermite codes, which are denoted as HARP (“Hermite Accelerator Pipeline”) boards
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Fig. 2. The logarithm of T , the total computing time required to advance the N -body system for one crossing time plotted
as a function of the particle number N for the equal time step scheme Teq, the individual time step scheme Tind and
the Ahmad–Cohen neighour scheme with two levels of individual time steps Ttt . The unit of computing time is the time
required to calculate the force between a pair of particles. The system is assumed to be homogeneous. From [61].

Fig. 3. As Fig. 2, but for the system with a power-law density distribution �˙ r−2:25. From [61].

and stem from the bigger GRAPE-family [83,63]. Such HARP-boards have been made available
also at some places outside Japan, including “Astronomisches Rechen-Institut” Heidelberg (for an
application see, e.g., [88]).
Another re�nement of the Hermite or Aarseth “brute force” method is the two-time step scheme,

denoted as neighbour or Ahmad–Cohen scheme [5]. For each particle a neighbour radius is de�ned,
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Fig. 4. Theoretical speed-up (neglecting communication) of regular force calculation as a function of processor number for
varying particle number N . The dashed line is the ideal maximum speed up which could be reached on a given processor
number.

and a and ȧ are computed due to neighbours and nonneighbours separately. Similar to the Hermite
scheme the higher derivatives are computed separately for the neighbour force (irregular force) and
nonneighbour force (regular force). Computing two timesteps, an irregular small �tirr and a regular
large �treg, from these two force components by Eq. (43) yields a timestep ratio of  :=�treg=�tirr
being in a typical range of 5–20 for N of the order 103–104. The reason is that the regular force has
much less uctuations than the irregular force. The Ahmad–Cohen neighbour scheme is implemented
in a self-regulated way, where at each regular timestep a new neighbour list is determined using
a given neighbour radius rsi for each particle. If the neighbour number found is larger than the
prescribed optimal neighbour number, the neighbour radius is increased or vice versa. In [1,61]
more complicated algorithms to adjust the neighbour radius are described. On the contrary in [61],
who �nd an optimal neighbour number of Nn;opt ˙ N 3=4 we �nd that adopting a constant neighbour
number of the order of 20–50 is su�cient at least up to N = 50000. The reason is that by using
special purpose machines or parallelization for parts of the code, an optimal neighbour number is
not well de�ned, so the neighbour number can be selected according to accuracy and e�ciency
requirements [81]. After each regular time step the new neighbour list is communicated along with
the new particle positions to all processors of the parallel machine, thus making it possible to do
the irregular time step in parallel as well.
Using a two-time step or neighbour scheme again increases the computational speed of the entire

integration by a factor of at least proportional to N 1=4 [57]. Both the regular and irregular timesteps
are arranged in the hierarchical, commensurable way, and the total inherent parallelism in the
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Fig. 5. As Fig. 4, for the irregular (neighbour) force calculation.

resulting algorithm is depicted in Figs. 4 and 5 from [81] for the irregular and the regular step.
One can see that even for moderate particle numbers of 104 particles some 512 processors could be
used e�ciently. Sometimes there are only very few particles in the smallest steps to be integrated,
which one might consider as being very prohibitive for parallelization. However, due to the large
number of medium and large size blocks this e�ect is negligible for the overall performance. It
causes, however, the saturation in the curves in Figs. 4 and 5 which de�nes the limit for the number
of processors useful for a given particle number N . By using more and more processors in the
parallel execution one �nds that the asymptotic scaling of the “brute force” N -body problem can be
reduced e�ectively to an N scaling (Fig. 6). But in our present implementation the parallelization is
done only according to parallel sections (do loops) in the code; there is no domain decomposition
(distributing particles on the processor). Thus at the end of any timesteps new results have to be
broadcast to all other processing units. A systolic algorithm is used for that which scales linearly in
communication time with the number of processors. It is interesting to note an approach suggested by
molecular dynamicists to use a new kind of hyper-systolic communication algorithm, which scales
only by the square root of the processor number [52,53]. Presently, we think that hyper-systolic
algorithms can e�ciently be used only if the sum over all particles for the acceleration and its time
derivative (Eq. (34)) should be directly parallelized. The number of interprocessor communications
Ncomm for the hyper-systolic algorithm is of the order N

√
nPE; on the other hand our algorithm, which

we would like to call here “parallel group execution algorithm” [81], has a scaling Ncomm ˙ N 2=3nPE,
because only subgroups of particles, whose size scales with N 2=3 have to be communicated across
the processor network. In other words, asymptotically above some critical particle number as a func-
tion of nPE, the hyper-systolic algorithm should lose against the parallel group execution algorithm.
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Fig. 6. CPU time needed for one N -body time unit as a function of particle number N using NBODY6++ on the CRAY
T3E. The collection of data points includes runs with varying average neighbour number and processor/pipeline number,
starting from 8 for low N up to 512 for the largest N , which are not individually discriminated in the �gure.

However, these questions have not yet been examined in detail, for example what the critical N
really are and which algorithm is more e�cient for practically useful particle numbers of today. This
is subject of present and future work.
If the two-body force between any pair of particles becomes dominant their (perturbed) relative

motion is integrated in special regularized coordinates (taking into account perturbations from �eld
particles), in which the singularity of the two-body motion is transformed into a slowly varying
parameter (the binding energy) and does not occur in the integration variables. The rest of the
N -body simulation generally regards the regularized pair as a compound particle located at the
position and moving with the velocity of its centre of mass, except in the case when a perturber
moves very close to a regularized pair (in such cases the pair is resolved). It was already discovered
in the earliest published N -body simulations that the formation of close and eccentric binaries occurs
as the rule rather than as an exception and that it was particularly di�cult to accurately integrate
them [39,40]. As a consequence two-body, three-body and chain regularizations were developed and
implemented in order to accurately and e�ciently integrate star clusters including all their close
binaries, triples and hierarchical subsystems. An excellent account of regularization, historically and
scienti�cally, can be found in [66]. Most recent developments are the slow-down treatment of tight
binaries [67] and a new method to gain accuracy and exact solutions in the unperturbed case using
Stump� functions [68].
Recently, the necessity of regularization was challenged and its replacement by a binary tree

structure for hierarchical systems with relative coordinates has been suggested [62]. However, the
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regularisation procedure is undisputedly much more e�cient and accurate for highly eccentric bina-
ries, and the new method has not yet been widely applied and proven to work through the most
delicate phase of core bounce and post-collapse evolution in point-mass systems or systems with
many primordial hard binaries.

3.4. Exponential instability, validity of N-body simulations, planetary system integrations

Concerning the algorithms explained in the previous section the direct N -body simulation may turn
out to be the most reliable (although computationally most expensive) way to simulate the dynamical
evolution of a gravitating system consisting of N point masses. It does not involve any serious
approximations and assumptions, as e.g. the Fokker–Planck approximation in the gaseous models.
By reducing the �-values any accuracy can be achieved in principle, as far as the globally conserved
quantities (energy, angular momentum) are concerned. However, for a system with N particles
phase space has 6N dimensions, and a check of say energy and angular momentum alone only
checks whether the numerically calculated system remains within the allowed (6N − 4)-dimensional
hypervolume. There is no a priori information how “exact” the individual trajectories are reproduced
in the simulation. Miller [69] pointed out that, due to repeated close encounters occurring between
particles initial con�gurations that are very close to each other, quickly diverge in their evolution
from each other. He could show that the separation in phase space of two trajectories increases
exponentially with time, or with other words, the evolution of the con�guration is extremely sensitive
to initial conditions (particle positions and velocities). The timescale of exponential instability is as
short as a fraction of a crossing time, and the accurate integration of a system to core collapse would
require of order O(N ) decimal places [28,45]. Those papers argue that the problem is caused by
two-body encounters, but chaotic orbits in nonintegrable potentials can be a source of exponential
instability and thus cause unreliable numerical integrations as well.
However, the situation is not as bad as it seems. N -body simulations for star clusters or galactic

nuclei do not really exploit the detailed con�guration space of all particles. Quantities of inter-
est are global or somehow averaged quantities, like Lagrangian radii or velocity dispersions aver-
aged in certain volumes. As it was nicely demonstrated in the pioneering series of papers [22–25],
such results are not sensitive to small variations of initial parameters. They took statistically in-
dependent initial models (positions and velocities at the beginning selected by di�erent random
number sets) and showed that the ensemble average of the dynamical evolution of the system al-
ways evolved predictably and in remarkable accord with results obtained from the Fokker–Planck
approximation. The method was also partly and successfully used in [26], which focused on the
evolution of anisotropy and comparisons with the anisotropic gaseous models of the author of this
paper.
As a consequence, it should be remembered, however, that great care has to be taken when

interpreting results of N -body simulations on a particle by particle basis, for example determining
rates of speci�c types of encounters, which could produce mergers in a large direct N -body model.
The long-term behaviour of dynamical systems as the solar system are being studied by N -body

simulations as well, but clearly there are much higher requirements on the accuracy of the individual
orbits in contrast to the star cluster problem. Therefore for the solar system dynamics symplectic
methods, using a generalized leap-frog, like the widely used Wisdom–Holman symplectic mapping
method [89] are the standard integration method. As a nonexhaustive reference the reader might look
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into a recent study of the relation between the earth–moon system and the stability of the inner solar
system using this method [43] and a contemporary review [16]. Symplectic mapping methods do not
show secular errors in energy and angular momentum. However, in their standard implementation
they require a constant timestep. A generalization using a time transformation simultaneously with
the generalized leap-frog has been suggested which can cope with variable timesteps [65]. Another
more practical approach to strongly reduce secular errors is to enforce a time-symmetric scheme by
making the timesteps reversible through an iteration [42,21]. How well this generally works and its
relation to symplectic schemes is presently not clear. In [68] it is stressed that even with a newly
applied classical method secular errors in the integration of close binaries can be strongly reduced.
One should keep in mind though, that the N -body integration schemes discussed in this paper yield
excellent results in the star cluster research (see Section 4) but are unsuitable for long-term solar
system studies, because they generally have secular errors, although small. As outlined above in
star cluster simulations the secular errors are being kept small relative to typical values of energy
and angular momentum and an accurate reproduction of all individual stellar orbits is not generally
required.

3.5. What about TREE- and fast multipole codes?

Finally, remarks shall be made on two very widely used algorithms to compute gravitational
potentials from particle distributions namely the TREE- and fast multipole (FMP) algorithms. The
TREE-method in [6] divides the system into hierarchical cells. The mutual interaction between par-
ticles or cells is resolved only if the opening parameter �= r=d, where r is the distance to and d a
size scale of the cell under consideration, is smaller than a prescribed critical �crit. If the cell is not
resolved because �¡�crit, there is still the option to evaluate multipole moments of its internal mass
distribution for the interaction with external particles. As one can see from Fig. 7, a global accuracy
requirement of �E=E ≈ 10−5 demands �crit ≈ 0:2, a value much smaller than the usually e�cient
choice of 0.5–0.7, at which the computational time scales approximately as O(N lnN ). Looking then
at Fig. 8, the computational time for the TREE-code with �crit ≈ 0:2 scales nearly as O(N 2), i.e., like
a “brute force” algorithm. So for each particle number and required accuracy one should carefully
check whether a TREE-code or a direct N -body code are the best choice.
Another TREE-based algorithm is the fast-multipole method (FMT) proposed in [30,31]. The

pair-wise potential in Eq. (30) is approximated by a multipole series, which can be done for ar-
bitrary precision if enough terms are included. The multipole terms used for di�erent test particles
can be transformed into each other by using clever addition theorems for spherical harmonics, so
the entire algorithm scales in its computational demand with O(N ) only. Higher precision only
changes the proportionality factor, not the scaling (as in the case of the TREE-code, which e�ec-
tively becomes a “brute force” code if high enough accuracy is demanded. However, such a code
is �ne only for homogeneous or nearly homogeneous systems, as they occur in plasma physics.
In all cases where there is strong spatial structure, like in astrophysical star clusters, Makino and
Hut [61] have demonstrated that the use of an individual time step scheme in an O(N 2) code gains
a factor at least ˙ N in e�ciency. So, asymptotically a “brute-force” integrator with individual
timesteps is more e�cient than an FMT integrator. The latter is based on an equal timestep for
all particles (otherwise it would lose its O(N ) property; so both codes have asymptotically the
same N scaling, but then the overhead (proportionality) factor is much smaller in the direct force
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Fig. 7. Tradeo� between CPU time per step and average force error for the TREE-code with monopole terms only. From
Fig. 4:11 of [74].

Fig. 8. CPU time per step versus particle number N for TREE-codes with varying opening parameter � and a direct full
“brute-force” labelled with PP in the �gure (for “particle–particle”). From Fig. 4:9 of [74].

Fig. 9. Comparison of computational time as a function of particle number N between particle–particle, hierarchical TREE,
and the fast multipole code. From Fig. 7:14 of [74].

summation than in the multipole evaluation. This can be seen also from Fig. 9 in [74] for low
N . For the direct calculation method in this plot, the individual timestep scheme is not taken into
account.
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Table 1
Algorithms for N -body simulations

Acronym Algorithm Scaling Comments

PM Particle mesh N n3c log2 n
3
c
a Fixed geometry

FMP Fast multipole N nlm required equal �t
SCF Self-consistent �eld N nlm Series evaluationb

NBODY1 Aarseth N 2 ITS, softening
NBODY1++ Hermite N 2 HTS, softening
NBODY2 Aarseth, AC NNn + N 2= ITS, softening,c

NBODY3 Aarseth N 2 ITS, KS-reg.
NBODY4 Hermite N 2 HTS, KS-reg.
NBODY5 Aarseth, AC NNn + N 2= ITS, KS-reg.c

NBODY6 Hermite, AC NNn + N 2= HTS, KS-reg.c

NBODY6++ parallel NBODY6 NNn + N 2= HTS, KS-reg.c;d

KIRA Hermite N 2 HTSe

TREE TREE-code N lnN N 2 for high accuracy
P3M Part.-Part. PM N 2n n

3
c log2 n

3
c
a �xed geometryf

N , particle; Nn, characteristic neighbour number; nc, number of grid cells in one dimension; nlm, order in 3D series
evaluation; softening; singularity in pairwise potential removed by softening parameter �; ITS, Individual time step scheme;
HTS, hierarchical block time step scheme; KS-reg., KS regularization of perturbed two- and hierarchical N -body motion
[48,68]; AC, Ahmad–Cohen neighbour scheme [5].
a Discrete FFT on regular 3D mesh with n linear mesh points assumed.
b Su�cient accuracy requires appropriate basis function set [37].
c : ratio of regular to irregular timestep.
d Speed-up by parallel execution not contained in scaling, see [81].
e New high-accuracy Hermite code based on STARLAB [64,75].
f With hierarchically nested adaptive grids used for cosmological simulations [73].

The information contained in the previous paragraphs, complemented by some additional details
and references, which will not be elaborated in more detail here, are presented in an overview in
Table 1. It is divided into three boxes, the �rst for the mesh or series evaluation codes, which
do not contain particle-particle forces and thus are not appropriate for direct modelling of relaxing
systems. The second box contains the classical direct “brute force” N -body codes, whereas the third
one contains algorithms which cannot clearly be counted to one of the other two groups.

4. Application to star clusters

Since this article is focused on the physical and numerical methods of calculating the evolution
of relaxing star clusters, only a brief account of some of the physical problems and challenges will
be given here, which have been and will be tackled by the previously described models. Despite of
a wealth of beautiful observational data provided by, e.g., Hubble space telescope observations of
globular clusters some of the fundamental questions related to the validity of the N -body approach
and the other approximate methods still deserve attention as they can lead to very fascinating general
questions regarding the thermodynamical behaviour of large N -body systems.
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Fig. 10. Evolution of the 1% Lagrangian radius in the averaged N =1000 N -body model in comparison to the anisotropic
gaseous model for di�erent strength of the binary energy generation parameter Cb (see Eq. (27)). The subscript cc indicates
a pure core collapse gaseous model without binary heating.

A series of papers has been devoted to the comparison of ensemble averaged N -body simulations
(N62000) with the expectations derived from Fokker–Planck or gaseous models [26,22–25]. Here
we show as an example, in Figs. 10 and 11, the excellent agreement reached between the anisotropic
gaseous model and the ensemble averaged N -body system. The models started with an initial Plum-
mer model and follow the core collapse induced by heat conduction and the post-collapse evolution
due to formation and hardening of three-body hard binaries. The agreement of both types of models
mutually supports both sides: it shows that by ensemble averaging, the exponential instability of the
N -body system does not spoil the physically correct behaviour of the system. It also demonstrates
that the Fokker–Planck approximation, especially with its underlying assumption of strict spherical
symmetry and dominance of small-angle two-body encounters for relaxation (i.e., neglectance of
collective processes), is correct. It also shows that the very simple algorithm to describe the heating
provided by the formation of close three-body binaries and their subsequent hardening by superelas-
tic binary-single star encounters, which was �rst introduced into the gaseous models in [9], provides
a surprisingly good description of the real processes in the average N -body system. The cited pa-
per ignited a discussion over many years whether gravothermal oscillations, being a thermodynamic
consequence of heat conduction by two-body relaxation, will prevail in a real N -body system with
all its stochastic uctuations. The question was settled after an N -body simulation on the massively
parallel Teraop GRAPE machine [63] using a high-accuracy Hermite scheme, as described above,
became available. Gravothermal oscillations were found in a very large N=32000 particle simulation
[59].
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Fig. 11. Evolution of the 1% Lagrangian radius in the averaged 1000, 50, 250 body models in comparison to the anisotropic
gaseous models using Cb = 90; 70; 55; respectively.

In Fig. 12 we show a striking example of the validity of the Fokker–Planck approximation even
for a single large direct N -body simulation, here using NBODY5, an Aarseth scheme (see Table 1),
for 10 000 particles, a model simulation again starting with Plummer’s model and undergoing core
collapse and core bounce due to hard binaries [80]. The average N =1000 particle model in [22] has
been taken and its time was scaled with the factor N=ln(N ), which is the scaling of the standard
two-body relaxation time, Eq. (4). An excellent match between the evolution of the Lagrangian
radii for the two systems occurs after such scaling, proving that it is indeed the standard relaxation
which dominates the pre-collapse evolution. The di�erences between the two systems show up at
the moment of the formation of the �rst three-body binaries, after which one expects the evolution
not to scale as the relaxation time. In simple terms, the larger N , the less important are three-body
e�ects as compared to the global potential; hence for large particle numbers the system collapses to
higher densities and three-body e�ects �nally dominate because they depend on the third power of
the particle density as compared to the N 2 dependence of two-body relaxation.
Finally, we show a result from [17] in Fig. 13, a new multi-mass model using the orbit averaged

Fokker–Planck approximation for axisymmetric rotating relaxing star clusters. The standard e�ect of
mass segregation of the heavy masses is accompanied here by an acceleration of their rotational
speed as compared to the small masses. Such interesting dynamical behaviour occurs just due to
point-mass relaxation processes starting with a very simple tidally truncated rotating King model
without any mass or rotational segregation. It is a yet unpublished generalization of equal mass
rotating star cluster models [18]. They neglect the possible dynamical e�ect of nonclassical third
integrals, since it is assumed that the distribution function depends on energy and z-component of
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Fig. 12. Lagrangian radii containing the indicated fraction of total mass as a function of time for a single 104-body
simulation (uctuating curves) compared to an averaged N = 1000 simulation of [22,23]. Times scaled as explained in
main text.

Fig. 13. Evolution of central angular velocities versus central density of all 10 mass bins used in the calculation for an
initial model with dimensionless central potential W0 = 3 and dimensionless angular velocity !0 = 0:30. The highest mass
bin with m = 1:4 M� is the uppermost curve, while the lowest mass bin with m = 0:15 M� is the lowest curve. The
parameters W0 and !0 refer to an initial Michie–King model.
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the angular momentum only. Such approximation needs to be checked by direct N -body models,
which is the subject of on-going work. The results will also be important for the dynamical study
of rotating galactic nuclei containing massive star-accreting black holes.
The reader should be made aware of the problem of scaling in the description of escaping

stars from globular clusters [75,3] being tackled by large direct N -body simulations and their com-
parisons with approximate models. There are more challenges, like the inclusion of many close
binaries already originating from star formation processes (for a calculation using NBODY5 see [46],
compare also [11,47] for the study of mass segregation in young forming star clusters by means
of direct N -body models). Finite sizes of stars lead to merging in high-density phases and cause
population gradients and unusually high frequencies of exotic objects like blue stragglers and pul-
sars in the cores and haloes of globular clusters. Attempts to model all these processes in direct
N -body models, with as many ingredients and realistic features included as possible are under way
[2]. Ultimately, we will be able from such models to provide synthetic observational data as, e.g.,
colour–magnitude diagrams.
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