8 research outputs found

    Extending OWns to include protection functionality

    Get PDF
    The objective of this dissertation is to enhance the functionality of an existing simulation package that is used to simulate fiber optic networks. These enhancements include the capability to simulate protection mechanisms following link failure, which is a necessity in real-world optical networks to ensure the continued flow of information following a failure in a part of the network. The capability for network traffic to choose from additional paths is also an addition to the software. The enhanced, as well as the original simulation software, are open source: this allows anyone to freely modify and improve the source code to suit his or her requirements. This dissertation will focus on mesh-based optical network topologies, which are commonly found in regional optical backbone networks, but which are also increasingly found in metropolitan areas. The regional networks all make use of wavelength division multiplexing (WDM), which consists of putting multiple different wavelengths of light on the same physical fiber. A single fiber breakage will therefore disrupt multiple fiber-optic connections. A fiber-optic network designer has to satisfy various conflicting requirements when designing a network: it must satisfy current and predicted future traffic requirements, it must be immune to equipment failure, but it must also be as inexpensive as possible. The network designer therefore has to evaluate different topologies and scenarios, and a good network simulator will provide invaluable assistance in finding an optimal solution. Protection and restoration need to be looked at in conjunction with routing and wavelength assignment (RWA), to ensure that resources in a network are used at maximum efficiency. Connection restoration time will also be looked at: this should be minimised to ensure minimal network downtime and ensuing loss of revenue. The chosen alternate connection path should also be as short as possible to minimise use of resources and maximise the carrying capacity of the network. Blocking probability (the inability to establish a connection due to a congested network) is a crucial factor and is also investigated. The topologies investigated in this dissertation consist of various mesh based real-world regional WDM fiber-optic networks. The impact of various link failures, the addition of additional alternate paths, as well as the effect of a protection mechanism on these topologies are also investigated. The proposed goals were all successfully achieved. The capability of simulating single as well as multiple link failures was introduced to the simulation package. The blocking probability of various network topologies was compared to each other in the presence of link failures. Success was also achieved in the introduction of a third alternate path to the simulation package.Dissertation (MEng(Electronic))--University of Pretoria, 2005.Electrical, Electronic and Computer Engineeringunrestricte

    Disaster Resilient Optical Core Networks

    Get PDF
    During the past few years, the number of catastrophic disasters has increased and its impact sometimes incapacitates the infrastructures within a region. The communication network infrastructure is one of the affected systems during these events. Thus, building a resilient network backbone is essential due to the big role of networks during disaster recovery operations. In this thesis, the research efforts in building a disaster-resilient network are reviewed and open issues related to building disaster-resilient networks are discussed. Large size disasters not necessarily impact the communication networks, but instead it can stimulate events that cause network performance degradation. In this regard, two open challenges that arise after disasters are considered one is the short-term capacity exhaustion and the second is the power outage. First, the post-disaster traffic floods phenomena is considered. The impact of the traffic floods on the optical core network performance is studied. Five mitigation approaches are proposed to serve these floods and minimise the incurred blocking. The proposed approaches explore different technologies such as excess or overprovisioned capacity exploitation, traffic filtering, protection paths rerouting, rerouting all traffic and finally using the degrees of freedom offered by differentiated services. The mitigation approaches succeeded in reducing the disaster induced traffic blocking. Second, advance reservation provisioning in an energy-efficient approach is developed. Four scenarios are considered to minimise power consumption. The scenarios exploit the flexibility provided by the sliding-window advance reservation requests. This flexibility is studied through scheduling and rescheduling scenarios. The proposed scenarios succeeded in minimising the consumed power. Third, the sliding-window flexibility is exploited for the objective of minimising network blocking during post-disaster traffic floods. The scheduling and rescheduling scenarios are extended to overcome the capacity exhaustion and improve the network blocking. The proposed schemes minimised the incurred blocking during traffic floods by exploiting sliding window. Fourth, building blackout resilient networks is proposed. The network performance during power outages is evaluated. A remedy approach is suggested for maximising network lifetime during blackouts. The approach attempts to reduce the required backup power supply while minimising network outages due to limited energy production. The results show that the mitigation approach succeeds in keeping the network alive during a blackout while minimising the required backup power

    Resource allocation and scalability in dynamic wavelength-routed optical networks.

    Get PDF
    This thesis investigates the potential benefits of dynamic operation of wavelength-routed optical networks (WRONs) compared to the static approach. It is widely believed that dynamic operation of WRONs would overcome the inefficiencies of the static allocation in improving resource use. By rapidly allocating resources only when and where required, dynamic networks could potentially provide the same service that static networks but at decreased cost, very attractive to network operators. This hypothesis, however, has not been verified. It is therefore the focus of this thesis to investigate whether dynamic operation of WRONs can save significant number of wavelengths compared to the static approach whilst maintaining acceptable levels of delay and scalability. Firstly, the wavelength-routed optical-burst-switching (WR-OBS) network architecture is selected as the dynamic architecture to be studied, due to its feasibility of implementation and its improved network performance. Then, the wavelength requirements of dynamic WR-OBS are evaluated by means of novel analysis and simulation and compared to that of static networks for uniform and non-uniform traffic demand. It is shown that dynamic WR-OBS saves wavelengths with respect to the static approach only at low loads and especially for sparsely connected networks and that wavelength conversion is a key capability to significantly increase the benefits of dynamic operation. The mean delay introduced by dynamic operation of WR-OBS is then assessed. The results show that the extra delay is not significant as to violate end-to-end limits of time-sensitive applications. Finally, the limiting scalability of WR-OBS as a function of the lightpath allocation algorithm computational complexity is studied. The trade-off between the request processing time and blocking probability is investigated and a new low-blocking and scalable lightpath allocation algorithm which improves the mentioned trade-off is proposed. The presented algorithms and results can be used in the analysis and design of dynamic WRONs

    Efficient routing and wavelength assignment for reconfigurable WDM networks

    No full text

    Joint optimization of topology, switching, routing and wavelength assignment

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 279-285).To provide end users with economic access to high bandwidth, the architecture of the next generation metropolitan area networks (MANs) needs to be judiciously designed from the cost perspective. In addition to a low initial capital investment, the ultimate goal is to design networks that exhibit excellent scalability - a decreasing cost-per-node-per-unit-traffic as user number and transaction size increase. As an effort to achieve this goal, in this thesis we search for the scalable network architectures over the solution space that embodies the key aspects of optical networks: fiber connection topology, switching architecture selection and resource dimensioning, routing and wavelength assignment (RWA). Due to the inter-related nature of these design elements, we intended to solve the design problem jointly in the optimization process in order to achieve over-all good performance. To evaluate how the cost drives architectural tradeoffs, an analytical approach is taken in most parts of the thesis by first focusing on networks with symmetric and well defined structures (i.e., regular networks) and symmetric traffic patterns (i.e., all-to-all uniform traffic), which are fair representations that give us suggestions of trends, etc.(cont.) We starts with a examination of various measures of regular topologies. The average minimum hop distance plays a crucial role in evaluating the efficiency of network architecture. From the perspective of designing optical networks, the amount of switching resources used at nodes is proportional to the average minimum hop distance. Thus a smaller average minimum hop distance translates into a lower fraction of pass-through traffic and less switching resources required. Next, a first-order cost model is set up and an optimization problem is formulated for the purpose of characterizing the tradeoffs between fiber and switching resources. Via convex optimization techniques, the joint optimization problem is solved analytically for (static) uniform traffic and symmetric networks. Two classes of regular graphs - Generalized Moore Graphs and A-nearest Neighbors Graphs - are identified to yield lower and upper cost bounds, respectively. The investigation of the cost scalability further demonstrates the advantage of the Generalized Moore Graphs as benchmark topologies: with linear switching cost structure, the minimal normalized cost per unit traffic decreases with increasing network size for the Generalized Moore Graphs and their relatives.(cont.) In comparison, for less efficient fiber topologies (e.g., A-nearest Neighbors) and switching cost structures (e.g., quadratic cost), the minimal normalized cost per unit traffic plateaus or even increases with increasing network size. The study also reveals other attractive properties of Generalized Moore Graphs in conjunction with minimum hop routing - the aggregate network load is evenly distributed over each fiber. Thus, Generalized Moore Graphs also require the minimum number of wavelengths to support a given uniform traffic demand. Further more, the theoretical works on the Generalized Moore Graphs and their close relatives are extended to study more realistic design scenarios in two aspects. One aspect addresses the irregular topologies and (static) non-uniform traffic, for which the results of Generalized Moore networks are used to provide useful estimates of network cost, and are thus offering good references for cost-efficient optical networks. The other aspect deals with network design under random demands. Two optimization formulations that incorporate the traffic variability are presented.(cont.) The results show that as physical architecture, Generalized Moore Graphs are most robust (in cost) to the demand uncertainties. Analytical results also provided design guidelines on how optimum dimensioning, network connectivity, and network costs vary as functions of risk aversion, service level requirements, and probability distributions of demands.by Kyle Chi Guan.Ph.D

    Efficient routing and wavelength assignment for reconfigurable WDM networks with wavelength converters

    No full text
    Abstract—We consider the problem of wavelength assignment in reconfigurable WDM networks with wavelength converters. We show that for-node-port bidirectional rings, a minimum number of R wavelengths are required to support all possible connected virtual topologies in a rearrangeably nonblocking fashion, and provide an algorithm that meets this bound using no more than P wavelength converters. This improves over the tight lower bound of Q wavelengths required for such rings given in [1] if no wavelength conversion is available. We extend this to the general-port case where each node may have a different number of ports, and show that no more than R CIwavelengths are required. We then provide a second algorithm that uses more wavelengths yet requires significantly fewer converters. We also develop a method that allows the wavelength converters to be arbitrarily located at any node in the ring. This gives significant flexibility in the design of the networks. For example, all P converters can be collocated at a single hub node, or distributed evenly among the nodes with �� � P CI converters at each node. Index Terms—Dynamic traffic, optical network, ring network, routing, wavelength assignment, wavelength division multiplexing (WDM). I
    corecore