22 research outputs found

    Efficient reinforcement learning for robots using informative simulated priors

    Get PDF
    Autonomous learning through interaction with the physical world is a promising approach to designing controllers and decision-making policies for robots. Unfortunately, learning on robots is often difficult due to the large number of samples needed for many learning algorithms. Simulators are one way to decrease the samples needed from the robot by incorporating prior knowledge of the dynamics into the learning algorithm. In this paper we present a novel method for transferring data from a simulator to a robot, using simulated data as a prior for real-world learning. A Bayesian nonparametric prior is learned from a potentially black-box simulator. The mean of this function is used as a prior for the Probabilistic Inference for Learning Control (PILCO) algorithm. The simulated prior improves the convergence rate and performance of PILCO by directing the policy search in areas of the state-space that have not yet been observed by the robot. Simulated and hardware results show the benefits of using the prior knowledge in the learning framework

    Asymmetric Actor Critic for Image-Based Robot Learning

    Full text link
    Deep reinforcement learning (RL) has proven a powerful technique in many sequential decision making domains. However, Robotics poses many challenges for RL, most notably training on a physical system can be expensive and dangerous, which has sparked significant interest in learning control policies using a physics simulator. While several recent works have shown promising results in transferring policies trained in simulation to the real world, they often do not fully utilize the advantage of working with a simulator. In this work, we exploit the full state observability in the simulator to train better policies which take as input only partial observations (RGBD images). We do this by employing an actor-critic training algorithm in which the critic is trained on full states while the actor (or policy) gets rendered images as input. We show experimentally on a range of simulated tasks that using these asymmetric inputs significantly improves performance. Finally, we combine this method with domain randomization and show real robot experiments for several tasks like picking, pushing, and moving a block. We achieve this simulation to real world transfer without training on any real world data.Comment: Videos of experiments can be found at http://www.goo.gl/b57WT

    Model-based Reinforcement Learning with Parametrized Physical Models and Optimism-Driven Exploration

    Full text link
    In this paper, we present a robotic model-based reinforcement learning method that combines ideas from model identification and model predictive control. We use a feature-based representation of the dynamics that allows the dynamics model to be fitted with a simple least squares procedure, and the features are identified from a high-level specification of the robot's morphology, consisting of the number and connectivity structure of its links. Model predictive control is then used to choose the actions under an optimistic model of the dynamics, which produces an efficient and goal-directed exploration strategy. We present real time experimental results on standard benchmark problems involving the pendulum, cartpole, and double pendulum systems. Experiments indicate that our method is able to learn a range of benchmark tasks substantially faster than the previous best methods. To evaluate our approach on a realistic robotic control task, we also demonstrate real time control of a simulated 7 degree of freedom arm.Comment: 8 page

    One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors

    Full text link
    One of the key challenges in applying reinforcement learning to complex robotic control tasks is the need to gather large amounts of experience in order to find an effective policy for the task at hand. Model-based reinforcement learning can achieve good sample efficiency, but requires the ability to learn a model of the dynamics that is good enough to learn an effective policy. In this work, we develop a model-based reinforcement learning algorithm that combines prior knowledge from previous tasks with online adaptation of the dynamics model. These two ingredients enable highly sample-efficient learning even in regimes where estimating the true dynamics is very difficult, since the online model adaptation allows the method to locally compensate for unmodeled variation in the dynamics. We encode the prior experience into a neural network dynamics model, adapt it online by progressively refitting a local linear model of the dynamics, and use model predictive control to plan under these dynamics. Our experimental results show that this approach can be used to solve a variety of complex robotic manipulation tasks in just a single attempt, using prior data from other manipulation behaviors

    Probabilistically Safe Policy Transfer

    Full text link
    Although learning-based methods have great potential for robotics, one concern is that a robot that updates its parameters might cause large amounts of damage before it learns the optimal policy. We formalize the idea of safe learning in a probabilistic sense by defining an optimization problem: we desire to maximize the expected return while keeping the expected damage below a given safety limit. We study this optimization for the case of a robot manipulator with safety-based torque limits. We would like to ensure that the damage constraint is maintained at every step of the optimization and not just at convergence. To achieve this aim, we introduce a novel method which predicts how modifying the torque limit, as well as how updating the policy parameters, might affect the robot's safety. We show through a number of experiments that our approach allows the robot to improve its performance while ensuring that the expected damage constraint is not violated during the learning process

    Using Parameterized Black-Box Priors to Scale Up Model-Based Policy Search for Robotics

    Get PDF
    The most data-efficient algorithms for reinforcement learning in robotics are model-based policy search algorithms, which alternate between learning a dynamical model of the robot and optimizing a policy to maximize the expected return given the model and its uncertainties. Among the few proposed approaches, the recently introduced Black-DROPS algorithm exploits a black-box optimization algorithm to achieve both high data-efficiency and good computation times when several cores are used; nevertheless, like all model-based policy search approaches, Black-DROPS does not scale to high dimensional state/action spaces. In this paper, we introduce a new model learning procedure in Black-DROPS that leverages parameterized black-box priors to (1) scale up to high-dimensional systems, and (2) be robust to large inaccuracies of the prior information. We demonstrate the effectiveness of our approach with the "pendubot" swing-up task in simulation and with a physical hexapod robot (48D state space, 18D action space) that has to walk forward as fast as possible. The results show that our new algorithm is more data-efficient than previous model-based policy search algorithms (with and without priors) and that it can allow a physical 6-legged robot to learn new gaits in only 16 to 30 seconds of interaction time.Comment: Accepted at ICRA 2018; 8 pages, 4 figures, 2 algorithms, 1 table; Video at https://youtu.be/HFkZkhGGzTo ; Spotlight ICRA presentation at https://youtu.be/_MZYDhfWeL

    Bayesian Optimization with Automatic Prior Selection for Data-Efficient Direct Policy Search

    Get PDF
    One of the most interesting features of Bayesian optimization for direct policy search is that it can leverage priors (e.g., from simulation or from previous tasks) to accelerate learning on a robot. In this paper, we are interested in situations for which several priors exist but we do not know in advance which one fits best the current situation. We tackle this problem by introducing a novel acquisition function, called Most Likely Expected Improvement (MLEI), that combines the likelihood of the priors and the expected improvement. We evaluate this new acquisition function on a transfer learning task for a 5-DOF planar arm and on a possibly damaged, 6-legged robot that has to learn to walk on flat ground and on stairs, with priors corresponding to different stairs and different kinds of damages. Our results show that MLEI effectively identifies and exploits the priors, even when there is no obvious match between the current situations and the priors.Comment: Accepted at ICRA 2018; 8 pages, 4 figures, 1 algorithm; Video at https://youtu.be/xo8mUIZTvNE ; Spotlight ICRA presentation https://youtu.be/iiVaV-U6Kq

    Doubly Stochastic Variational Inference for Deep Gaussian Processes

    Get PDF
    Gaussian processes (GPs) are a good choice for function approximation as they are flexible, robust to over-fitting, and provide well-calibrated predictive uncertainty. Deep Gaussian processes (DGPs) are multi-layer generalisations of GPs, but inference in these models has proved challenging. Existing approaches to inference in DGP models assume approximate posteriors that force independence between the layers, and do not work well in practice. We present a doubly stochastic variational inference algorithm, which does not force independence between layers. With our method of inference we demonstrate that a DGP model can be used effectively on data ranging in size from hundreds to a billion points. We provide strong empirical evidence that our inference scheme for DGPs works well in practice in both classification and regression.Comment: NIPS 201
    corecore