18,937 research outputs found

    Designing Illumination Lenses and Mirrors by the Numerical Solution of Monge-Amp\`ere Equations

    Full text link
    We consider the inverse refractor and the inverse reflector problem. The task is to design a free-form lens or a free-form mirror that, when illuminated by a point light source, produces a given illumination pattern on a target. Both problems can be modeled by strongly nonlinear second-order partial differential equations of Monge-Amp\`ere type. In [Math. Models Methods Appl. Sci. 25 (2015), pp. 803--837, DOI: 10.1142/S0218202515500190] the authors have proposed a B-spline collocation method which has been applied to the inverse reflector problem. Now this approach is extended to the inverse refractor problem. We explain in depth the collocation method and how to handle boundary conditions and constraints. The paper concludes with numerical results of refracting and reflecting optical surfaces and their verification via ray tracing.Comment: 16 pages, 6 figures, 2 tables; Keywords: Inverse refractor problem, inverse reflector problem, elliptic Monge-Amp\`ere equation, B-spline collocation method, Picard-type iteration; OCIS: 000.4430, 080.1753, 080.4225, 080.4228, 080.4298, 100.3190. Minor revision: two typos have been corrected and copyright note has been adde

    Flux-Limited Diffusion for Multiple Scattering in Participating Media

    Full text link
    For the rendering of multiple scattering effects in participating media, methods based on the diffusion approximation are an extremely efficient alternative to Monte Carlo path tracing. However, in sufficiently transparent regions, classical diffusion approximation suffers from non-physical radiative fluxes which leads to a poor match to correct light transport. In particular, this prevents the application of classical diffusion approximation to heterogeneous media, where opaque material is embedded within transparent regions. To address this limitation, we introduce flux-limited diffusion, a technique from the astrophysics domain. This method provides a better approximation to light transport than classical diffusion approximation, particularly when applied to heterogeneous media, and hence broadens the applicability of diffusion-based techniques. We provide an algorithm for flux-limited diffusion, which is validated using the transport theory for a point light source in an infinite homogeneous medium. We further demonstrate that our implementation of flux-limited diffusion produces more accurate renderings of multiple scattering in various heterogeneous datasets than classical diffusion approximation, by comparing both methods to ground truth renderings obtained via volumetric path tracing.Comment: Accepted in Computer Graphics Foru

    On Algorithms Based on Joint Estimation of Currents and Contrast in Microwave Tomography

    Full text link
    This paper deals with improvements to the contrast source inversion method which is widely used in microwave tomography. First, the method is reviewed and weaknesses of both the criterion form and the optimization strategy are underlined. Then, two new algorithms are proposed. Both of them are based on the same criterion, similar but more robust than the one used in contrast source inversion. The first technique keeps the main characteristics of the contrast source inversion optimization scheme but is based on a better exploitation of the conjugate gradient algorithm. The second technique is based on a preconditioned conjugate gradient algorithm and performs simultaneous updates of sets of unknowns that are normally processed sequentially. Both techniques are shown to be more efficient than original contrast source inversion.Comment: 12 pages, 12 figures, 5 table

    3D differential phase contrast microscopy

    Full text link
    We demonstrate 3D phase and absorption recovery from partially coherent intensity images captured with a programmable LED array source. Images are captured through-focus with four different illumination patterns. Using first Born and weak object approximations (WOA), a linear 3D differential phase contrast (DPC) model is derived. The partially coherent transfer functions relate the sample's complex refractive index distribution to intensity measurements at varying defocus. Volumetric reconstruction is achieved by a global FFT-based method, without an intermediate 2D phase retrieval step. Because the illumination is spatially partially coherent, the transverse resolution of the reconstructed field achieves twice the NA of coherent systems and improved axial resolution

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Graph-based classification of multiple observation sets

    Get PDF
    We consider the problem of classification of an object given multiple observations that possibly include different transformations. The possible transformations of the object generally span a low-dimensional manifold in the original signal space. We propose to take advantage of this manifold structure for the effective classification of the object represented by the observation set. In particular, we design a low complexity solution that is able to exploit the properties of the data manifolds with a graph-based algorithm. Hence, we formulate the computation of the unknown label matrix as a smoothing process on the manifold under the constraint that all observations represent an object of one single class. It results into a discrete optimization problem, which can be solved by an efficient and low complexity algorithm. We demonstrate the performance of the proposed graph-based algorithm in the classification of sets of multiple images. Moreover, we show its high potential in video-based face recognition, where it outperforms state-of-the-art solutions that fall short of exploiting the manifold structure of the face image data sets.Comment: New content adde
    • …
    corecore