2 research outputs found

    On the performance of broadcast algorithms in interconnection networks

    Get PDF
    Broadcast Communication is among the most primitive collective capabilities of any message passing network. Broadcast algorithms for the mesh have been widely reported in the literature. However, most existing algorithms have been studied within limited conditions, such as light traffic load and fixed network sizes. In other words, most of these algorithms have not been studied at different Quality of Service (QoS) levels. In contrast, this study examines the broadcast operation, taking into account the scalability, parallelism, a wide range of traffic loads through the propagation of broadcast messages. To the best of our knowledge, this study is the first to consider the issue of broadcast latency at both the network and node levels across different traffic loads. Results are shown from a comparative analysis confirming that the coded-path based broadcast algorithms exhibit superior performance characteristics over some existing algorithms

    Efficient path-based multicast in wormhole-routed mesh networks

    No full text
    [[abstract]]The capability of multidestination wormhole allows a message to be propagated along any valid path in a wormhole-routed network conforming to the underlying base routing scheme. The multicast on the path-based routing model is highly dependent on the spatial locality of destinations participating in multicasting. In this paper, we propose two proximity grouping schemes for efficient multicast in wormhole-routed mesh networks with multidestination capability by exploiting the spatial locality of the destination set. The first grouping scheme, graph-based proximity grouping, is proposed to group the destinations together with locality to construct several disjoint sub-meshes. This is achieved by modeling the proximity grouping problem to graph partitioning problem. The second one, pattern-based proximity grouping, is proposed by the pattern classification schemes to achieve the goal of the proximity grouping. By simulation results, we show the routing performance gains over the traditional Hamiltonian-path routing scheme.[[incitationindex]]SC
    corecore