9 research outputs found

    Iterative solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order method

    Full text link
    We consider the solution to the biharmonic equation in mixed form discretized by the Hybrid High-Order (HHO) methods. The two resulting second-order elliptic problems can be decoupled via the introduction of a new unknown, corresponding to the boundary value of the solution of the first Laplacian problem. This technique yields a global linear problem that can be solved iteratively via a Krylov-type method. More precisely, at each iteration of the scheme, two second-order elliptic problems have to be solved, and a normal derivative on the boundary has to be computed. In this work, we specialize this scheme for the HHO discretization. To this aim, an explicit technique to compute the discrete normal derivative of an HHO solution of a Laplacian problem is proposed. Moreover, we show that the resulting discrete scheme is well-posed. Finally, a new preconditioner is designed to speed up the convergence of the Krylov method. Numerical experiments assessing the performance of the proposed iterative algorithm on both two- and three-dimensional test cases are presented

    Preconditioning for hyperelasticity-based mesh optimisation

    Get PDF
    A robust mesh optimisation method is presented that directly enforces the resulting deformation to be orientation preserving. Motivated by aspects from mathematical elasticity, the energy functional of the mesh deformation can be related to a stored energy functional of a hyperelastic material. Formulating the functional in the principal invariants of the deformation gradient allows fine grained control over the resulting deformation. Solution techniques for the arising nonconvex and highly nonlinear system are presented. As existing preconditioners are not sufficient, a PDE-based preconditioner is developed

    Robust Preconditioners for the High-Contrast Elliptic Partial Differential Equations

    Get PDF
    In this thesis, we discuss a robust preconditioner (the AGKS preconditioner) for solving linear systems arising from approximations of partial differential equations (PDEs) with high-contrast coefficients. The problems considered here include the standard second and higher order elliptic PDEs such as high-contrast diffusion equation, Stokes\u27 equation and biharmonic-plate equation. The goal of this study is the development of robust and parallelizable preconditioners that can easily be integrated to treat large configurations. The construction of the preconditioner consists of two phases. The first one is an algebraic phase which partitions the degrees of freedom into high and low permeability regions which may be of arbitrary geometry. This yields a corresponding block partitioning of the stiffness matrix allowing us to use a formula for the action of its inverse involving the inverses of both the high permeability block and its Schur complement in the original matrix. Singular perturbation analysis plays a big role to analyze the structure of the required subblock inverses in the high contrast case which shows that for high enough contrast each of the subblock inverses can be approximated well by solving only systems with constant coefficients. The second phase involves an efficient multigrid approximation of this exact inverse. After applying singular perturbation theory to each of the sub-blocks, we obtain that inverses of each of the subblocks with high contrast entries can be approximated efficiently using geometric multigrid methods, and that this approximation is robust with respect to both the contrast and the mesh size. The result is a multigrid method for high contrast problems which is provably optimal to both contrast and mesh size. We demonstrate the advantageous properties of the AGKS preconditioner using experiments on model high-contrast problems. We examine its performance against multigrid method under varying discretizations of diffusion equation, Stokes equation and biharmonic-plate equation. Thus, we show that we accomplished a desirable preconditioning design goal by using the same family of preconditioners to solve the elliptic family of PDEs with varying discretizations

    Preconditioning Techniques for Saddle Point Problems.

    Get PDF

    Numerical solution of saddle point problems

    Full text link

    Efficient Parallel Solvers for the Biharmonic Equation

    No full text
    We examine the convergence characteristics and performance of parallelised Krylov subspace solvers applied to the linear algebraic systems that arise from low-order mixed finite element approximation of the biharmonic problem. Our strategy results in preconditioned systems that have nearly optimal eigenvalue distribution, which consists of a tightly clustered set together with a small number of outliers
    corecore