3,308 research outputs found

    Efficient Parallel Solution of the 3D Stationary Boltzmann Transport Equation for Diffusive Problems

    Get PDF
    International audienceThis paper presents an efficient parallel method for the deterministic solution of the 3D stationary Boltzmann transport equation applied to diffusive problems such as nuclear core criticality computations. Based on standard MultiGroup-Sn-DD discretization schemes, our approach combines a highly efficient nested parallelization strategy [1] with the PDSA parallel acceleration technique [2] applied for the first time to 3D transport problems. These two key ingredients enable us to solve extremely large neutronic problems involving up to 10 12 degrees of freedom in less than an hour using 64 super-computer nodes

    Résolution parallèle efficace de l'équation de transport 3D de Boltzmann pour des problèmes diffusifs

    Get PDF
    This paper presents an efficient parallel method for the deterministic solution of the 3D stationary Boltzmann transport equation applied to diffusive problems such as nuclear core criticality computations. Based on standard MultiGroup-Sn-DD discretization schemes, our approach combines a highly efficient nested parallelization strategy with the PDSA parallel acceleration technique applied for the first time to 3D transport problems. These two key ingredients enable us to solve extremely large neutronic problems involving up to 10^(12) degrees of freedom in less than an hour using 64 super-computer nodes.Ce papier présente une méthode efficace pour le calcul déterministe d'une solution au problème des équations de Boltzmann pour le transport stationnaire 3D appliqué à des problèmes diffusifs de calcul de criticité dans les coeurs de réacteurs nucléaires. Notre approche, basée sur un schéma de discrétisation standard en multi-groupes Sn-DD, combine une stratégie de parallélisation efficace avec la technique d'accélération parallèle PDSA appliquées pour la première fois à des problèmes de transports 3D. Ces deux ingrédients clés nous ont permis de résoudre des problèmes de neutronique extrêmement large impliquant jusqu'à 10^(12) degrés de libertés en moins d'1 heure sur 64 noeuds d'un super-calculateur

    Influence of asperities on fluid and thermal flow in a fracture: a coupled Lattice Boltzmann study

    Full text link
    The characteristics of the hydro-thermal flow which occurs when a cold fluid is injected into a hot fractured bedrock depend on the morphology of the fracture. We consider a sharp triangular asperity, invariant in one direction, perturbing an otherwise flat fracture. We investigate its influence on the macroscopic hydraulic transmissivity and heat transfer efficiency, at fixed low Reynolds number. In this study, numerical simulations are done with a coupled lattice Boltzmann method that solves both the complete Navier-Stokes and advection-diffusion equations in three dimensions. The results are compared with those obtained under lubrication approximations which rely on many hypotheses and neglect the three-dimensional (3D) effects. The lubrication results are obtained by analytically solving the Stokes equation and a two-dimensional (integrated over the thickness) advection-diffusion equation. We use a lattice Boltzmann method with a double distribution (for mass and energy transport) on hypercubic and cubic lattices. Beyond some critical slope for the boundaries, the velocity profile is observed to be far from a quadratic profile in the vicinity of the sharp asperity: the fluid within the triangular asperity is quasi-static. We find that taking account of both the 3D effects and the cooling of the rock, are important for the thermal exchange. Neglecting these effects with lubrication approximations results in overestimating the heat exchange efficiency. The evolution of the temperature over time, towards steady state, also shows complex behavior: some sites alternately reheat and cool down several times, making it difficult to forecast the extracted heat.Comment: In Journal of Geophysical Research B (2013) online firs

    Modeling transport of charged species in pore networks: solution of the Nernst-Planck equations coupled with fluid flow and charge conservation equations

    Get PDF
    A pore network modeling (PNM) framework for the simulation of transport of charged species, such as ions, in porous media is presented. It includes the Nernst-Planck (NP) equations for each charged species in the electrolytic solution in addition to a charge conservation equation which relates the species concentration to each other. Moreover, momentum and mass conservation equations are adopted and there solution allows for the calculation of the advective contribution to the transport in the NP equations. The proposed framework is developed by first deriving the numerical model equations (NMEs) corresponding to the partial differential equations (PDEs) based on several different time and space discretization schemes, which are compared to assess solutions accuracy. The derivation also considers various charge conservation scenarios, which also have pros and cons in terms of speed and accuracy. Ion transport problems in arbitrary pore networks were considered and solved using both PNM and finite element method (FEM) solvers. Comparisons showed an average deviation, in terms of ions concentration, between PNM and FEM below 5%5\% with the PNM simulations being over 104{10}^{4} times faster than the FEM ones for a medium including about 104{10}^{4} pores. The improved accuracy is achieved by utilizing more accurate discretization schemes for both the advective and migrative terms, adopted from the CFD literature. The NMEs were implemented within the open-source package OpenPNM based on the iterative Gummel algorithm with relaxation. This work presents a comprehensive approach to modeling charged species transport suitable for a wide range of applications from electrochemical devices to nanoparticle movement in the subsurface

    Disorder and interference: localization phenomena

    Full text link
    The specific problem we address in these lectures is the problem of transport and localization in disordered systems, when interference is present, as characteristic for waves, with a focus on realizations with ultracold atoms.Comment: Notes of a lecture delivered at the Les Houches School of Physics on "Ultracold gases and quantum information" 2009 in Singapore. v3: corrected mistakes, improved script for numerics, Chapter 9 in "Les Houches 2009 - Session XCI: Ultracold Gases and Quantum Information" edited by C. Miniatura et al. (Oxford University Press, 2011
    • …
    corecore