691 research outputs found

    Efficient oligonucleotide probe selection for pan-genomic tiling arrays

    Get PDF
    Background: Array comparative genomic hybridization is a fast and cost-effective method for detecting, genotyping, and comparing the genomic sequence of unknown bacterial isolates. This method, as with all microarray applications, requires adequate coverage of probes targeting the regions of interest. An unbiased tiling of probes across the entire length of the genome is the most flexible design approach. However, such a whole-genome tiling requires that the genome sequence is known in advance. For the accurate analysis of uncharacterized bacteria, an array must query a fully representative set of sequences from the species' pan-genome. Prior microarrays have included only a single strain per array or the conserved sequences of gene families. These arrays omit potentially important genes and sequence variants from the pan-genome. Results: This paper presents a new probe selection algorithm (PanArray) that can tile multiple whole genomes using a minimal number of probes. Unlike arrays built on clustered gene families, PanArray uses an unbiased, probe-centric approach that does not rely on annotations, gene clustering, or multi-alignments. Instead, probes are evenly tiled across all sequences of the pangenome at a consistent level of coverage. To minimize the required number of probes, probes conserved across multiple strains in the pan-genome are selected first, and additional probes are used only where necessary to span polymorphic regions of the genome. The viability of the algorithm is demonstrated by array designs for seven different bacterial pan-genomes and, in particular, the design of a 385,000 probe array that fully tiles the genomes of 20 different Listeria monocytogenes strains with overlapping probes at greater than twofold coverage. Conclusion: PanArray is an oligonucleotide probe selection algorithm for tiling multiple genome sequences using a minimal number of probes. It is capable of fully tiling all genomes of a species on a single microarray chip. These unique pan-genome tiling arrays provide maximum flexibility for the analysis of both known and uncharacterized strains.https://doi.org/10.1186/1471-2105-10-29

    Whole-genome sequence analysis for pathogen detection and diagnostics

    Get PDF
    This dissertation focuses on computational methods for improving the accuracy of commonly used nucleic acid tests for pathogen detection and diagnostics. Three specific biomolecular techniques are addressed: polymerase chain reaction, microarray comparative genomic hybridization, and whole-genome sequencing. These methods are potentially the future of diagnostics, but each requires sophisticated computational design or analysis to operate effectively. This dissertation presents novel computational methods that unlock the potential of these diagnostics by efficiently analyzing whole-genome DNA sequences. Improvements in the accuracy and resolution of each of these diagnostic tests promises more effective diagnosis of illness and rapid detection of pathogens in the environment. For designing real-time detection assays, an efficient data structure and search algorithm are presented to identify the most distinguishing sequences of a pathogen that are absent from all other sequenced genomes. Results are presented that show these "signature" sequences can be used to detect pathogens in complex samples and differentiate them from their non-pathogenic, phylogenetic near neighbors. For microarray, novel pan-genomic design and analysis methods are presented for the characterization of unknown microbial isolates. To demonstrate the effectiveness of these methods, pan-genomic arrays are applied to the study of multiple strains of the foodborne pathogen, Listeria monocytogenes, revealing new insights into the diversity and evolution of the species. Finally, multiple methods are presented for the validation of whole-genome sequence assemblies, which are capable of identifying assembly errors in even finished genomes. These validated assemblies provide the ultimate nucleic acid diagnostic, revealing the entire sequence of a genome

    Strand-specific transcriptome profiling with directly labeled RNA on genomic tiling microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With lower manufacturing cost, high spot density, and flexible probe design, genomic tiling microarrays are ideal for comprehensive transcriptome studies. Typically, transcriptome profiling using microarrays involves reverse transcription, which converts RNA to cDNA. The cDNA is then labeled and hybridized to the probes on the arrays, thus the RNA signals are detected indirectly. Reverse transcription is known to generate artifactual cDNA, in particular the synthesis of second-strand cDNA, leading to false discovery of antisense RNA. To address this issue, we have developed an effective method using RNA that is directly labeled, thus by-passing the cDNA generation. This paper describes this method and its application to the mapping of transcriptome profiles.</p> <p>Results</p> <p>RNA extracted from laboratory cultures of <it>Porphyromonas gingivalis </it>was fluorescently labeled with an alkylation reagent and hybridized directly to probes on genomic tiling microarrays specifically designed for this periodontal pathogen. The generated transcriptome profile was strand-specific and produced signals close to background level in most antisense regions of the genome. In contrast, high levels of signal were detected in the antisense regions when the hybridization was done with cDNA. Five antisense areas were tested with independent strand-specific RT-PCR and none to negligible amplification was detected, indicating that the strong antisense cDNA signals were experimental artifacts.</p> <p>Conclusions</p> <p>An efficient method was developed for mapping transcriptome profiles specific to both coding strands of a bacterial genome. This method chemically labels and uses extracted RNA directly in microarray hybridization. The generated transcriptome profile was free of cDNA artifactual signals. In addition, this method requires fewer processing steps and is potentially more sensitive in detecting small amount of RNA compared to conventional end-labeling methods due to the incorporation of more fluorescent molecules per RNA fragment.</p

    Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Get PDF
    Background: Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA) genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results: In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion: Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a resequencing microarray when their sequences differ by more than a few percent. The data suggest that interspecific cross-hybridization will not interfere with the accurate recovery of species-specific data from multispecies microarrays, provided that the species' DNA sequences differ by > 20% (mean of 5b differences per 25b oligo). Recovery of DNA sequence data from multiple, distantly-related species on a single multiplex gene chip should be a practical, highly-parallel method for investigating genomic biodiversity

    Genomic characterization of Gli-activator targets in sonic hedgehog-mediated neural patterning

    Get PDF
    Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150 kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34 established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional targets in a crucial Shh-mediated patterning process

    Design of an Enterobacteriaceae Pan-genome Microarray Chip

    Get PDF

    High-Resolution Copy-Number Variation Map Reflects Human Olfactory Receptor Diversity and Evolution

    Get PDF
    Olfactory receptors (ORs), which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction (∼55%) of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs), we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that ∼50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used in future genetic association studies of olfactory inter-individual differences

    Development of computational tools and resources for systems biology of bacterial pathogens

    Get PDF
    Bacterial pathogens are a major cause of diseases in human, agricultural plants and farm animals. Even after decades of research they remain a challenge to health care as they are known to rapidly evolve and develop resistance to the existing drugs. Systems biology is an emerging area of research where all of the components of the system, their interactions, and the dynamics can be studied in a comprehensive, quantitative, and integrative fashion to generate predictive models. When applied to bacterial pathogenesis, systems biology approaches will help identify potential novel molecular targets for drug discovery. A pre-requisite for conducting systems analysis is the identification of the building blocks of the system i.e. individual components of the system (structural annotation), identification of their functions (functional annotation) and identification of the interactions among the individual components (interaction prediction). In the context of bacterial pathogenesis, it is necessary to identify the host-pathogen interactions. This dissertation work describes computational resources that enable comprehensive systems level study of host pathogen system to enhance our understanding of bacterial pathogenesis. It specifically focuses on improving the structural and functional annotation of pathogen genomes as well as identifying host-pathogen interactions at a genome scale. The novel contributions of this dissertation towards systems biology of bacterial pathogens include three computational tools/resources. “TAAPP” (Tiling array analysis pipeline for prokaryotes) is a web based tool for the analysis of whole genome tiling array data for bacterial pathogens. TAAPP helps improve the structural annotation of bacterial genomes. “ISO-IEA” (Inferred from sequence orthology - Inferred from electronic annotation) is a tool that can be used for the functional annotation of any sequenced genome. “HPIDB” (Host pathogen interaction database) is developed with data a mining capability that includes host-pathogen interaction prediction. The new knowledge gained due to the implementation of these tools is the description of the non coding RNA as well as a computationally predicted host-pathogen interaction network for the human respiratory pathogen Streptococcus pneumoniae. In summary, the computation tools and resources developed in this dissertation study will enable building systems biology models of bacterial pathogens

    Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project

    Get PDF
    We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function
    corecore