33 research outputs found

    CENSOR: Privacy-preserving Obfuscation for Outsourcing SAT formulas

    Get PDF
    We propose a novel obfuscation technique that can be used to outsource hard satisfiability (SAT) formulas to the cloud. Servers with large computational power are typically used to solve SAT instances that model real-life problems in task scheduling, AI planning, circuit verification and more. However, outsourcing data to the cloud may lead to privacy and information breaches since satisfying assignments may reveal considerable information about the underlying problem modeled by SAT. In this work, we develop CENSOR (privaCy prEserviNg obfuScation for Outsourcing foRmulas), a novel SAT obfuscation framework that resembles Indistinguishability Obfuscation. At the core of the framework lies a mechanism that transforms any formula to a random one with the same number of satisfying assignments. As a result, obfuscated formulas are indistinguishable from each other thus preserving the input-output privacy of the original SAT instance. Contrary to prior solutions that are rather adhoc in nature, we formally prove the security of our scheme. Additionally, we show that obfuscated formulas are within a polynomial factor of the original ones thus achieving polynomial slowdown. Finally, the whole process is efficient in practice, allowing solutions to original instances to be easily recovered from obfuscated ones. A byproduct of our method is that all NP problems can be potentially outsourced to the cloud by means of reducing to SAT

    Problems in Cloud Security, Access Control and Logic Locking

    Get PDF
    In this thesis, we study problems related to security in three different contexts: cloud scheduling, access control, and logic locking to protect digital ICs. The first set of problems relates to security in cloud computing. Prior work suggests that scheduling, with security as a consideration, can be effective in minimizing information leakage, via side-channels, that can exist when virtual machines (VMs) co-reside in clouds. We analyze the overhead that is incurred by such an approach. We first pose and answer a fundamental question: is the problem tractable? We show that the seemingly simpler sub-cases of initial placement and migration across only two equal-capacity servers are both intractable (NP-hard). However, a decision version of the general problem to which the optimization version is related polynomially is in NP. With these results as the basis, we make several other contributions. We revisit recent work that proposes a greedy algorithm for this problem, called Nomad. We establish that if P != NP, then there exist infinitely many classes of input, each with an infinite number of inputs, for which a decrease in information leakage is possible, but Nomad provides none, let alone minimize it. We establish also that a mapping to Integer Linear Programming (ILP) in prior work is deficient in that the mapping can be inefficient (exponential-time), and therefore does not accurately convey the overhead of such an approach that actually decreases information leakage. We present our efficient reductions to ILP and boolean satisfiability in conjunctive normal form (CNF-SAT). We have implemented these approaches and conducted an empirical assessment using the same ILP solver as prior work, and a SAT solver. Our analytical and empirical results more accurately convey the overhead that is incurred by an approach that actually provides security (decrease in information leakage). The second set of problems relates to access control. We pose and study forensic analysis in the context of access control systems. Forensics seeks to answer questions about past states of a system, and thereby provides important clues and evidence in the event of a security incident. Access control deals with who may perform what action on a resource and is an important security function. We argue that access control is an important context in which to consider forensic analysis, and observe that it is a natural complement of safety analysis, which has been considered extensively in the literature. We pose the forensic analysis problem for access control systems abstractly, and instantiate it for three schemes from the literature: a well-known access matrix scheme, a role-based scheme, and a discretionary scheme. In particular, we ask what the computational complexity of forensic analysis is, and compare it to the computational complexity of safety analysis for each of these schemes. We observe that in the worst-case, forensic analysis lies in the same complexity class as safety analysis. We consider also the notion of logs, i.e., data that can be collected over time to aid forensic analysis. We present results for sufficient and minimal logs that render forensic analysis for the three schemes efficient. This motivates discussions on goal-directed logging, with the explicit intent of aiding forensic analysis. We carry out a case-study in the realistic setting of a serverless cloud application, and observe that goal-directed logging can be highly effective. Our work makes contributions at the foundations of information security, and its practical implications. The third set of problems relates to logic locking to protect digital integrated circuits (ICs) against untrusted semiconductor foundries. We make two sets of complementary contributions, all rooted in foundations and bolstered by implementations and empirical results. Our first set of contributions regards observations about prior schemes and attacks, and our second is a new security notion. Towards the former, we make two contributions. (a) We revisit a prior approach called XOR-locking that has been demonstrated to be susceptible, in practice, to a particular attack called the SAT attack. We establish that (i) there exist circuits that are invulnerable to the SAT attack when XOR-locked with even a 1-bit key, and, (ii) there is a particular property that is inherent to benchmark circuits that explains why the SAT attack is successful against XOR-locked versions of those. Both (i) and (ii) are rooted in computing foundations: for (i), one-way functions; for (ii), average-case computational complexity, specifically, the class distP. (b) We revisit a state-of-art logic locking approach called TTLock whose generalization called SFLL-HD has been argued to be ``provably secure'' in prior work. We devise a new, probabilistic attack against TTLock. We explain, from foundations, why benchmark circuits that are locked using TTLock are susceptible to our new attack. Our observations (a) and (b), and prior work on attacks, informs our second contribution, which is a new security notion. Our notion is at least as strong as the property that underlies the SAT attack

    Order-Revealing Encryption and the Hardness of Private Learning

    Full text link
    An order-revealing encryption scheme gives a public procedure by which two ciphertexts can be compared to reveal the ordering of their underlying plaintexts. We show how to use order-revealing encryption to separate computationally efficient PAC learning from efficient (ϵ,δ)(\epsilon, \delta)-differentially private PAC learning. That is, we construct a concept class that is efficiently PAC learnable, but for which every efficient learner fails to be differentially private. This answers a question of Kasiviswanathan et al. (FOCS '08, SIAM J. Comput. '11). To prove our result, we give a generic transformation from an order-revealing encryption scheme into one with strongly correct comparison, which enables the consistent comparison of ciphertexts that are not obtained as the valid encryption of any message. We believe this construction may be of independent interest.Comment: 28 page

    Quantifiable Assurance: From IPs to Platforms

    Get PDF
    Hardware vulnerabilities are generally considered more difficult to fix than software ones because they are persistent after fabrication. Thus, it is crucial to assess the security and fix the vulnerabilities at earlier design phases, such as Register Transfer Level (RTL) and gate level. The focus of the existing security assessment techniques is mainly twofold. First, they check the security of Intellectual Property (IP) blocks separately. Second, they aim to assess the security against individual threats considering the threats are orthogonal. We argue that IP-level security assessment is not sufficient. Eventually, the IPs are placed in a platform, such as a system-on-chip (SoC), where each IP is surrounded by other IPs connected through glue logic and shared/private buses. Hence, we must develop a methodology to assess the platform-level security by considering both the IP-level security and the impact of the additional parameters introduced during platform integration. Another important factor to consider is that the threats are not always orthogonal. Improving security against one threat may affect the security against other threats. Hence, to build a secure platform, we must first answer the following questions: What additional parameters are introduced during the platform integration? How do we define and characterize the impact of these parameters on security? How do the mitigation techniques of one threat impact others? This paper aims to answer these important questions and proposes techniques for quantifiable assurance by quantitatively estimating and measuring the security of a platform at the pre-silicon stages. We also touch upon the term security optimization and present the challenges for future research directions

    FuncTeller: How Well Does eFPGA Hide Functionality?

    Full text link
    Hardware intellectual property (IP) piracy is an emerging threat to the global supply chain. Correspondingly, various countermeasures aim to protect hardware IPs, such as logic locking, camouflaging, and split manufacturing. However, these countermeasures cannot always guarantee IP security. A malicious attacker can access the layout/netlist of the hardware IP protected by these countermeasures and further retrieve the design. To eliminate/bypass these vulnerabilities, a recent approach redacts the design's IP to an embedded field-programmable gate array (eFPGA), disabling the attacker's access to the layout/netlist. eFPGAs can be programmed with arbitrary functionality. Without the bitstream, the attacker cannot recover the functionality of the protected IP. Consequently, state-of-the-art attacks are inapplicable to pirate the redacted hardware IP. In this paper, we challenge the assumed security of eFPGA-based redaction. We present an attack to retrieve the hardware IP with only black-box access to a programmed eFPGA. We observe the effect of modern electronic design automation (EDA) tools on practical hardware circuits and leverage the observation to guide our attack. Thus, our proposed method FuncTeller selects minterms to query, recovering the circuit function within a reasonable time. We demonstrate the effectiveness and efficiency of FuncTeller on multiple circuits, including academic benchmark circuits, Stanford MIPS processor, IBEX processor, Common Evaluation Platform GPS, and Cybersecurity Awareness Worldwide competition circuits. Our results show that FuncTeller achieves an average accuracy greater than 85% over these tested circuits retrieving the design's functionality.Comment: To be published in the proceedings of the 32st USENIX Security Symposium, 202

    On Zero-Testable Homomorphic Encryption and Publicly Verifiable Non-Interactive Arguments

    Get PDF
    We define and study zero-testable homomorphic encryption (ZTHE) -- a semantically secure, somewhat homomorphic encryption scheme equipped with a weak zero test that can identify trivial zeros. These are ciphertexts that result from homomorphically evaluating an arithmetic circuit computing the zero polynomial over the integers. This is a relaxation of the (strong) zero test provided by the notion of graded encodings, which identifies all encodings of zero. We show that ZTHE can suffice for powerful applications. Based on any ZTHE scheme that satisfies the additional properties of correctness on adversarial ciphertexts and multi-key homomorphism, we construct publicly verifiable non-interactive arguments for delegating computation. Such arguments were previously constructed from indistinguishability obfuscation or based on so-called knowledge assumptions. The arguments we construct are adaptively sound, based on an efficiently falsifiable assumption, and only make black-box use of the underlying cryptographic primitives. We also show that a ZTHE scheme that is sufficient for our application can be constructed based on an efficiently-falsifiable assumption over so-called clean graded encodings

    Security and trust in cloud computing and IoT through applying obfuscation, diversification, and trusted computing technologies

    Get PDF
    Cloud computing and Internet of Things (IoT) are very widely spread and commonly used technologies nowadays. The advanced services offered by cloud computing have made it a highly demanded technology. Enterprises and businesses are more and more relying on the cloud to deliver services to their customers. The prevalent use of cloud means that more data is stored outside the organization’s premises, which raises concerns about the security and privacy of the stored and processed data. This highlights the significance of effective security practices to secure the cloud infrastructure. The number of IoT devices is growing rapidly and the technology is being employed in a wide range of sectors including smart healthcare, industry automation, and smart environments. These devices collect and exchange a great deal of information, some of which may contain critical and personal data of the users of the device. Hence, it is highly significant to protect the collected and shared data over the network; notwithstanding, the studies signify that attacks on these devices are increasing, while a high percentage of IoT devices lack proper security measures to protect the devices, the data, and the privacy of the users. In this dissertation, we study the security of cloud computing and IoT and propose software-based security approaches supported by the hardware-based technologies to provide robust measures for enhancing the security of these environments. To achieve this goal, we use obfuscation and diversification as the potential software security techniques. Code obfuscation protects the software from malicious reverse engineering and diversification mitigates the risk of large-scale exploits. We study trusted computing and Trusted Execution Environments (TEE) as the hardware-based security solutions. Trusted Platform Module (TPM) provides security and trust through a hardware root of trust, and assures the integrity of a platform. We also study Intel SGX which is a TEE solution that guarantees the integrity and confidentiality of the code and data loaded onto its protected container, enclave. More precisely, through obfuscation and diversification of the operating systems and APIs of the IoT devices, we secure them at the application level, and by obfuscation and diversification of the communication protocols, we protect the communication of data between them at the network level. For securing the cloud computing, we employ obfuscation and diversification techniques for securing the cloud computing software at the client-side. For an enhanced level of security, we employ hardware-based security solutions, TPM and SGX. These solutions, in addition to security, ensure layered trust in various layers from hardware to the application. As the result of this PhD research, this dissertation addresses a number of security risks targeting IoT and cloud computing through the delivered publications and presents a brief outlook on the future research directions.Pilvilaskenta ja esineiden internet ovat nykyään hyvin tavallisia ja laajasti sovellettuja tekniikkoja. Pilvilaskennan pitkälle kehittyneet palvelut ovat tehneet siitä hyvin kysytyn teknologian. Yritykset enenevässä määrin nojaavat pilviteknologiaan toteuttaessaan palveluita asiakkailleen. Vallitsevassa pilviteknologian soveltamistilanteessa yritykset ulkoistavat tietojensa käsittelyä yrityksen ulkopuolelle, minkä voidaan nähdä nostavan esiin huolia taltioitavan ja käsiteltävän tiedon turvallisuudesta ja yksityisyydestä. Tämä korostaa tehokkaiden turvallisuusratkaisujen merkitystä osana pilvi-infrastruktuurin turvaamista. Esineiden internet -laitteiden lukumäärä on nopeasti kasvanut. Teknologiana sitä sovelletaan laajasti monilla sektoreilla, kuten älykkäässä terveydenhuollossa, teollisuusautomaatiossa ja älytiloissa. Sellaiset laitteet keräävät ja välittävät suuria määriä informaatiota, joka voi sisältää laitteiden käyttäjien kannalta kriittistä ja yksityistä tietoa. Tästä syystä johtuen on erittäin merkityksellistä suojata verkon yli kerättävää ja jaettavaa tietoa. Monet tutkimukset osoittavat esineiden internet -laitteisiin kohdistuvien tietoturvahyökkäysten määrän olevan nousussa, ja samaan aikaan suuri osuus näistä laitteista ei omaa kunnollisia teknisiä ominaisuuksia itse laitteiden tai niiden käyttäjien yksityisen tiedon suojaamiseksi. Tässä väitöskirjassa tutkitaan pilvilaskennan sekä esineiden internetin tietoturvaa ja esitetään ohjelmistopohjaisia tietoturvalähestymistapoja turvautumalla osittain laitteistopohjaisiin teknologioihin. Esitetyt lähestymistavat tarjoavat vankkoja keinoja tietoturvallisuuden kohentamiseksi näissä konteksteissa. Tämän saavuttamiseksi työssä sovelletaan obfuskaatiota ja diversifiointia potentiaalisiana ohjelmistopohjaisina tietoturvatekniikkoina. Suoritettavan koodin obfuskointi suojaa pahantahtoiselta ohjelmiston takaisinmallinnukselta ja diversifiointi torjuu tietoturva-aukkojen laaja-alaisen hyödyntämisen riskiä. Väitöskirjatyössä tutkitaan luotettua laskentaa ja luotettavan laskennan suoritusalustoja laitteistopohjaisina tietoturvaratkaisuina. TPM (Trusted Platform Module) tarjoaa turvallisuutta ja luottamuksellisuutta rakentuen laitteistopohjaiseen luottamukseen. Pyrkimyksenä on taata suoritusalustan eheys. Työssä tutkitaan myös Intel SGX:ää yhtenä luotettavan suorituksen suoritusalustana, joka takaa suoritettavan koodin ja datan eheyden sekä luottamuksellisuuden pohjautuen suojatun säiliön, saarekkeen, tekniseen toteutukseen. Tarkemmin ilmaistuna työssä turvataan käyttöjärjestelmä- ja sovellusrajapintatasojen obfuskaation ja diversifioinnin kautta esineiden internet -laitteiden ohjelmistokerrosta. Soveltamalla samoja tekniikoita protokollakerrokseen, työssä suojataan laitteiden välistä tiedonvaihtoa verkkotasolla. Pilvilaskennan turvaamiseksi työssä sovelletaan obfuskaatio ja diversifiointitekniikoita asiakaspuolen ohjelmistoratkaisuihin. Vankemman tietoturvallisuuden saavuttamiseksi työssä hyödynnetään laitteistopohjaisia TPM- ja SGX-ratkaisuja. Tietoturvallisuuden lisäksi nämä ratkaisut tarjoavat monikerroksisen luottamuksen rakentuen laitteistotasolta ohjelmistokerrokseen asti. Tämän väitöskirjatutkimustyön tuloksena, osajulkaisuiden kautta, vastataan moniin esineiden internet -laitteisiin ja pilvilaskentaan kohdistuviin tietoturvauhkiin. Työssä esitetään myös näkemyksiä jatkotutkimusaiheista

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Non-Interactive RAM and Batch NP Delegation from any PIR

    Get PDF
    We present an adaptive and non-interactive protocol for verifying arbitrary efficient computations in fixed polynomial time. Our protocol is computationally sound and can be based on any computational PIR scheme, which in turn can be based on standard polynomial-time cryptographic assumptions (e.g. the worst case hardness of polynomial-factor approximation of short-vector lattice problems). In our protocol, the prover and the verifier do not need to interact at all: The verifier sets up a public key ahead of time, and this key can be used by any prover to prove arbitrary statements in a completely adaptive manner. Verification is done using a secret verification key, and soundness relies on this key not being known to the prover. Our protocol further allows to prove statements about computations of arbitrary RAM machines. Previous works either relied on knowledge assumptions, or could only offer non-adaptive two-message protocols (where the first message could not be re-used), and required either obfuscation-based assumptions or super-polynomial hardness assumptions. We show that our techniques can also be applied to construct a new type of (non-adaptive) 2-message delegation protocols for batch NP statements. Specifically, we can simultaneously prove the membership of multiple instances in a given NP language, with communication complexity proportional to the length of a single witness
    corecore