9,441 research outputs found

    Efficient neighbourhood-based information gain approach for exploration of complex 3D environments

    Full text link
    This paper presents an approach for exploring a complex 3D environment with a sensor mounted on the end effector of a robot manipulator. In contrast to many current approaches which plan as far ahead as possible using as much environment information as is available, our approach considers only a small set of poses (vector of joint angles) neighbouring the robot's current pose in configuration space. Our approach is compared to an existing exploration strategy for a similar robot. Our results demonstrate a significant decrease in the number of information gain estimation calculations that need to be performed, while still gathering an equivalent or increased amount of information about the environment. © 2013 IEEE

    Autonomous 3D Exploration of Large Structures Using an UAV Equipped with a 2D LIDAR

    Get PDF
    This paper addressed the challenge of exploring large, unknown, and unstructured industrial environments with an unmanned aerial vehicle (UAV). The resulting system combined well-known components and techniques with a new manoeuvre to use a low-cost 2D laser to measure a 3D structure. Our approach combined frontier-based exploration, the Lazy Theta* path planner, and a flyby sampling manoeuvre to create a 3D map of large scenarios. One of the novelties of our system is that all the algorithms relied on the multi-resolution of the octomap for the world representation. We used a Hardware-in-the-Loop (HitL) simulation environment to collect accurate measurements of the capability of the open-source system to run online and on-board the UAV in real-time. Our approach is compared to different reference heuristics under this simulation environment showing better performance in regards to the amount of explored space. With the proposed approach, the UAV is able to explore 93% of the search space under 30 min, generating a path without repetition that adjusts to the occupied space covering indoor locations, irregular structures, and suspended obstaclesUnión Europea Marie Sklodowska-Curie 64215Unión Europea MULTIDRONE (H2020-ICT-731667)Uniión Europea HYFLIERS (H2020-ICT-779411

    Key feature-based approach for efficient exploration of structured environments

    Full text link
    © 2015 IEEE. This paper presents an exploration approach for robots to determine sensing actions that facilitate the building of surface maps of structured partially-known environments. This approach uses prior knowledge about key environmental features to rapidly generate an estimate of the rest of the environment. Specifically, in order to quickly detect key features, partial surface patches are used in combination with pose optimisation to select a pose from a set of nearest neighbourhood candidates, from which to make an observation of the surroundings. This paper enables the robot to greedily search through a sequence of nearest neighbour poses in configuration space, then converge upon poses from which key features can best be observed. The approach is experimentally evaluated and found to result in significantly fewer exploration steps compared to alternative approaches

    Efficient Environment Guided Approach for Exploration of Complex Environments

    Get PDF
    Remote inspection of a complex environment is a difficult, time consuming task for human operators to perform. The need to manually avoid obstacles whilst considering other performance factors i.e. time taken, joint effort and information gained represents significant challenges to continuous operation. This paper proposes an autonomous robotic solution for exploration of an unknown, complex environment using a high DoF robot arm with an eye in hand depth sensor. The main contribution of this work is a new strategy to find the next best view by evaluating frontier regions of the map to maximise coverage, in contrast to many current approaches which densely sample joint or workspace configurations of the robot. Multiple utility functions were evaluated that showed different behaviours. Our results indicated that the presented algorithm can explore an arbitrary environment efficiently while optimising various performance criteria based on the utility function chosen, application constraints and the desires of the user

    Infrastructure robotics: Research challenges and opportunities

    Full text link
    Infrastructure robotics is about research on and development of methodologies that enable robotic systems to be used in civil infrastructure inspection, maintenance and rehabilitation. This paper briefly discusses the current research challenges and opportunities in infrastructure robotics, and presents a review of the research activities and projects in this field at the Centre for Autonomous Systems, University of Technology Sydney

    Online planning for multi-robot active perception with self-organising maps

    Full text link
    © 2017, Springer Science+Business Media, LLC, part of Springer Nature. We propose a self-organising map (SOM) algorithm as a solution to a new multi-goal path planning problem for active perception and data collection tasks. We optimise paths for a multi-robot team that aims to maximally observe a set of nodes in the environment. The selected nodes are observed by visiting associated viewpoint regions defined by a sensor model. The key problem characteristics are that the viewpoint regions are overlapping polygonal continuous regions, each node has an observation reward, and the robots are constrained by travel budgets. The SOM algorithm jointly selects and allocates nodes to the robots and finds favourable sequences of sensing locations. The algorithm has a runtime complexity that is polynomial in the number of nodes to be observed and the magnitude of the relative weighting of rewards. We show empirically the runtime is sublinear in the number of robots. We demonstrate feasibility for the active perception task of observing a set of 3D objects. The viewpoint regions consider sensing ranges and self-occlusions, and the rewards are measured as discriminability in the ensemble of shape functions feature space. Exploration objectives for online tasks where the environment is only partially known in advance are modelled by introducing goal regions in unexplored space. Online replanning is performed efficiently by adapting previous solutions as new information becomes available. Simulations were performed using a 3D point-cloud dataset from a real robot in a large outdoor environment. Our results show the proposed methods enable multi-robot planning for online active perception tasks with continuous sets of candidate viewpoints and long planning horizons

    Surrogate modeling of computer experiments with sequential experimental design

    Get PDF
    corecore