3,940 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationThe continuous growth of wireless communication use has largely exhausted the limited spectrum available. Methods to improve spectral efficiency are in high demand and will continue to be for the foreseeable future. Several technologies have the potential to make large improvements to spectral efficiency and the total capacity of networks including massive multiple-input multiple-output (MIMO), cognitive radio, and spatial-multiplexing MIMO. Of these, spatial-multiplexing MIMO has the largest near-term potential as it has already been adopted in the WiFi, WiMAX, and LTE standards. Although transmitting independent MIMO streams is cheap and easy, with a mere linear increase in cost with streams, receiving MIMO is difficult since the optimal methods have exponentially increasing cost and power consumption. Suboptimal MIMO detectors such as K-Best have a drastically reduced complexity compared to optimal methods but still have an undesirable exponentially increasing cost with data-rate. The Markov Chain Monte Carlo (MCMC) detector has been proposed as a near-optimal method with polynomial cost, but it has a history of unusual performance issues which have hindered its adoption. In this dissertation, we introduce a revised derivation of the bitwise MCMC MIMO detector. The new approach resolves the previously reported high SNR stalling problem of MCMC without the need for hybridization with another detector method or adding heuristic temperature scaling terms. Another common problem with MCMC algorithms is an unknown convergence time making predictable fixed-length implementations problematic. When an insufficient number of iterations is used on a slowly converging example, the output LLRs can be unstable and overconfident, therefore, we develop a method to identify rare, slowly converging runs and mitigate their degrading effects on the soft-output information. This improves forward-error-correcting code performance and removes a symptomatic error floor in bit-error-rates. Next, pseudo-convergence is identified with a novel way to visualize the internal behavior of the Gibbs sampler. An effective and efficient pseudo-convergence detection and escape strategy is suggested. Finally, the new excited MCMC (X-MCMC) detector is shown to have near maximum-a-posteriori (MAP) performance even with challenging, realistic, highly-correlated channels at the maximum MIMO sizes and modulation rates supported by the 802.11ac WiFi specification, 8x8 256 QAM. Further, the new excited MCMC (X-MCMC) detector is demonstrated on an 8-antenna MIMO testbed with the 802.11ac WiFi protocol, confirming its high performance. Finally, a VLSI implementation of the X-MCMC detector is presented which retains the near-optimal performance of the floating-point algorithm while having one of the lowest complexities found in the near-optimal MIMO detector literature

    Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU

    Get PDF
    [EN] The number of transmit and receiver antennas is an important factor that affects the performance and complexity of a MIMO system. A MIMO system with very large number of antennas is a promising candidate technology for next generations of wireless systems. However, the vast majority of the methods proposed for conventional MIMO system are not suitable for large dimensions. In this context, the use of high-performance computing systems, such us multicore CPUs and graphics processing units has become attractive for efficient implementation of parallel signal processing algorithms with high computational requirements. In the present work, two practical parallel approaches of the Subspace Marginalization with Interference Suppression detector for large MIMO systems have been proposed. Both approaches have been evaluated and compared in terms of performance and complexity with other detectors for different system parameters.This work has been partially supported by the Spanish MINECO Grant RACHEL TEC2013-47141-C4-4-R, the PROMETEO FASE II 2014/003 Project and FPU AP-2012/71274Ramiro Sánchez, C.; Simarro, MA.; Gonzalez, A.; Vidal Maciá, AM. (2019). Parallel SUMIS Soft Detector for Large MIMO Systems on Multicore and GPU. The Journal of Supercomputing. 75(3):1256-1267. https://doi.org/10.1007/s11227-018-2403-9S12561267753Rusek F, Persson D, Lau BK, Larsson EG, Marzetta TL, Edfors O, Tufvesson F (2013) Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Proc Mag 30(1):40–60Studer C, Burg A, Bölcskei H (2008) Soft-output sphere decoding: algorithms and VLSI implementation. IEEE J Sel Areas Commun 26(2):290–300Wang R, Giannakis GB (2004) Approaching MIMO channel capacity with reduced-complexity soft sphere decoding. In: Wireless Communications and Networking Conference, 2004. WCNC. 2004 IEEE vol 3, pp 1620–1625Persson D, Larsson EG (2011) Partial marginalization soft MIMO detection with higher order constellations. IEEE Trans Signal Procces 59(1):453–458Cîrkić M, Larsson EG (2014) SUMIS: near-optimal soft-in soft-out MIMO detection with low and fixed complexity. IEEE Trans Signal Process 62(12):3084–3097Alberto Gonzalez C, Ramiro, M, Ángeles Simarro, Antonio M Vidal (2017) Parallel SUMIS soft detector for MIMO systems on multicore. In: Proceedings of the 17th International Conference on Computational and Mathematical Methods in Science and Engineering, pp 1729–1736Hochwald BM, ten Brink S (2003) Achieving near-capacity on a multiple-antenna channel. IEEE Trans Commun 51:389–399Kaipeng L, Bei Y, Michael W, Joseph RC, Christoph S (2015) Accelerating massive MIMO uplink detection on GPU for SDR systems. In: 2015 IEEE dallas circuits and systems conference (DCAS), pp 1–4Di W, Eilert J, Liu D (2011) Implementation of a high-speed MIMO soft-output symbol detector for software defined radio. J Signal Process Syst 63(1):27–37Anderson E, Bai Z, Bischof C, Blackford LS, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK users’ guide. SIAM, LondonIntel MKL Reference Manual (2015) https://software.intel.com/en-us/articles/mkl-reference-manualcuBLAS Documentation (2015) http://docs.nvidia.com/cuda/cublasDagum L, Enon R (1998) OpenMP: an industry standard API for shared-memory programming. IEEE Comput Sci Eng 5(1):46–55CUDA Toolkit Documentation, Version 7.5 (2015) https://developer.nvidia.com/cuda-toolkitRoger S, Ramiro C, Gonzalez A, Almenar V, Vidal AM (2012) Fully parallel GPU implementation of a fixed-complexity soft-output MIMO detector. IEEE Trans Veh Technol 61(8):3796–3800Senst M, Ascheid G, Lüders H (2010) Performance evaluation of the markov chain monte carlo MIMO detector based on mutual information. 2010 IEEE International Conference on Communications (ICC), pp 1–

    On Low-Resolution ADCs in Practical 5G Millimeter-Wave Massive MIMO Systems

    Full text link
    Nowadays, millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems is a favorable candidate for the fifth generation (5G) cellular systems. However, a key challenge is the high power consumption imposed by its numerous radio frequency (RF) chains, which may be mitigated by opting for low-resolution analog-to-digital converters (ADCs), whilst tolerating a moderate performance loss. In this article, we discuss several important issues based on the most recent research on mmWave massive MIMO systems relying on low-resolution ADCs. We discuss the key transceiver design challenges including channel estimation, signal detector, channel information feedback and transmit precoding. Furthermore, we introduce a mixed-ADC architecture as an alternative technique of improving the overall system performance. Finally, the associated challenges and potential implementations of the practical 5G mmWave massive MIMO system {with ADC quantizers} are discussed.Comment: to appear in IEEE Communications Magazin

    On the Performance of Mismatched Data Detection in Large MIMO Systems

    Full text link
    We investigate the performance of mismatched data detection in large multiple-input multiple-output (MIMO) systems, where the prior distribution of the transmit signal used in the data detector differs from the true prior. To minimize the performance loss caused by this prior mismatch, we include a tuning stage into our recently-proposed large MIMO approximate message passing (LAMA) algorithm, which allows us to develop mismatched LAMA algorithms with optimal as well as sub-optimal tuning. We show that carefully-selected priors often enable simpler and computationally more efficient algorithms compared to LAMA with the true prior while achieving near-optimal performance. A performance analysis of our algorithms for a Gaussian prior and a uniform prior within a hypercube covering the QAM constellation recovers classical and recent results on linear and non-linear MIMO data detection, respectively.Comment: Will be presented at the 2016 IEEE International Symposium on Information Theor
    corecore