7,439 research outputs found

    Efficient Maxima-Finding Algorithms for Random Planar Samples

    Get PDF
    this paper a simple classification of several known algorithms for finding the maxima, together with several new algorithms; among these are two efficient algorithms---one with expected complexity n +O( # nlogn) when the point samples are issued from some planar regions, and another more efficient than existing one

    Efficient maxima-finding algorithms for random planar samples

    Get PDF
    We collect major known algorithms in the literature for finding the maxima of multi-dimensional points and provide a simple classification. Several new algorithms are proposed. In particular, we give a new maxima-finding algorithm with expected complexity n+O(√n\log n) when the input is a sequence of points uniformly chosen at random from general planar regions. We also give a sequential algorithm, very efficient for practical purposes

    RRR: Rank-Regret Representative

    Full text link
    Selecting the best items in a dataset is a common task in data exploration. However, the concept of "best" lies in the eyes of the beholder: different users may consider different attributes more important, and hence arrive at different rankings. Nevertheless, one can remove "dominated" items and create a "representative" subset of the data set, comprising the "best items" in it. A Pareto-optimal representative is guaranteed to contain the best item of each possible ranking, but it can be almost as big as the full data. Representative can be found if we relax the requirement to include the best item for every possible user, and instead just limit the users' "regret". Existing work defines regret as the loss in score by limiting consideration to the representative instead of the full data set, for any chosen ranking function. However, the score is often not a meaningful number and users may not understand its absolute value. Sometimes small ranges in score can include large fractions of the data set. In contrast, users do understand the notion of rank ordering. Therefore, alternatively, we consider the position of the items in the ranked list for defining the regret and propose the {\em rank-regret representative} as the minimal subset of the data containing at least one of the top-kk of any possible ranking function. This problem is NP-complete. We use the geometric interpretation of items to bound their ranks on ranges of functions and to utilize combinatorial geometry notions for developing effective and efficient approximation algorithms for the problem. Experiments on real datasets demonstrate that we can efficiently find small subsets with small rank-regrets
    • …
    corecore