1,881 research outputs found

    Hardware accelerated authentication system for dynamic time-critical networks

    Get PDF
    The secure and efficient operation of time-critical networks, such as vehicular networks, smart-grid and other smart-infrastructures, is of primary importance in today’s society. It is crucial to minimize the impact of security mechanisms over such networks so that the safe and reliable operations of time-critical systems are not being interfered. Even though there are several security mechanisms, their application to smart-infrastructure and Internet of Things (IoT) deployments may not meet the ubiquitous and time-sensitive needs of these systems. That is, existing security mechanisms either introduce a significant computation and communication overhead, or they are not scalable for a large number of IoT components. In particular, as a primary authentication mechanism, existing digital signatures cannot meet the real-time processing requirements of time-critical networks, and also do not fully benefit from advancements in the underlying hardware/software of IoTs. As a part of this thesis, we create a reliable and scalable authentication system to ensure secure and reliable operation of dynamic time-critical networks like vehicular networks through hardware acceleration. The system is implemented on System-On-Chips (SoC) leveraging the parallel processing capabilities of the embedded Graphical Processing Units (GPUs) along with the CPUs (Central Processing Units). We identify a set of cryptographic authentication mechanisms, which consist of operations that are highly parallelizable while still maintain high standards of security and are also secure against various malicious adversaries. We also focus on creating a fully functional prototype of the system which we call a “Dynamic Scheduler” which will take care of scheduling the messages for signing or verification on the basis of their priority level and the number of messages currently in the system, so as to derive maximum throughput or minimum latency from the system, whatever the requirement may be

    Elliptical Curve Digital Signatures Algorithm

    Get PDF
    Elliptical digital signatures algorithm provides security services for resource constrained embedded devices. The ECDSA level security can be enhanced by several parameters as parameter key size and the security level of ECDSA elementary modules such as hash function, elliptic curve point multiplication on koblitz curve which is used to compute public key and a pseudo-random generator which generates key pair generation. This paper describes novel security approach on authentication schemes as a modification of ECDSA scheme. This paper provides a comprehensive survey of recent developments on elliptic curve digital signatures approaches. The survey of ECDSA involves major issues like security of cryptosystem, RFID-tag authentication, Montgomery multiplication over binary fields, Scaling techniques, Signature generation ,signature verification, point addition and point doubling of the different coordinate system and classification. DOI: 10.17762/ijritcc2321-8169.150318

    Study of Data Security Algorithms using Verilog HDL

    Get PDF
    This paper describes an overview of data security algorithms and its performance evaluation. AES, RC5 and SHA algorithms have been taken under this study. Three different types of security algorithms used to analyze the performance study. The designs were implemented in Quartus-II software. The results obtained for encryption and decryption procedures show a significant improvement on the performance of the three algorithms. In this paper, 128-bit AES, 64-bit of RC5 and 512-bit of SHA256 encryption and Decryption has been made using Verilog Hardware Description Language and simulated using ModelSim

    Secure Remote Control and Configuration of FPX Platform in Gigabit Ethernet Environment

    Get PDF
    Because of its flexibility and high performance, reconfigurable logic functions implemented on the Field-programmable Port Extender (FPX ) are well suited for implementing network processing such as packet classification, filtering and intrusion detection functions. This project focuses on two key aspects of the FPX system. One is providing a Gigabit Ethernet interface by designing logic for a FPGA which is located on a line card. Address Resolution Protocol (ARP) packets are handled in hardware and Ethernet frames are processed and transformed into cells suitable for standard FPX application. The other effort is to provide a secure channel to enable remote control and configuration of the FPX system through public internet. A suite of security hardware cores were implemented that include the Advanced Encryption Standard (AES), Triple Data Encryption Standard (3DES), Hashed Message Authentication Code (HMAC), Message Digest Version 5 (MD5) and Secure Hash Algorithm (SHA-1). An architecture and an associated protocol have been developed which provide a secure communication channel between a control console and a hardware-based reconfigurable network node. This solution is unique in that it does not require a software process to run on the network stack, so that it has both higher performance and prevents the node from being hacked using traditional vulnerabilities found in common operating systems. The mechanism can be applied to the design and implementation of re-motely managed FPX systems. A hardware module called the Secure Control Packet Processor (SCPP) has been designed for a FPX based firewall. It utilizes AES or 3DES in Error Propagation Block Chaining (EPBC) mode to ensure data confidentiality and data integrity. There is also an authenticated engine that uses HMAC. to generate the acknowledgments. The system can protect the FPX system against attacks that may be sent over the control and configuration channel. Based on this infrastructure, an enhanced protocol is addressed that provides higher efficiency and can defend against replay attack. To support that, a control cell encryption module was designed and tested in the FPX system

    Design and analysis of an FPGA-based, multi-processor HW-SW system for SCC applications

    Get PDF
    The last 30 years have seen an increase in the complexity of embedded systems from a collection of simple circuits to systems consisting of multiple processors managing a wide variety of devices. This ever increasing complexity frequently requires that high assurance, fail-safe and secure design techniques be applied to protect against possible failures and breaches. To facilitate the implementation of these embedded systems in an efficient way, the FPGA industry recently created new families of devices. New features added to these devices include anti-tamper monitoring, bit stream encryption, and optimized routing architectures for physical and functional logic partition isolation. These devices have high capacities and are capable of implementing processors using their reprogrammable logic structures. This allows for an unprecedented level of hardware and software interaction within a single FPGA chip. High assurance and fail-safe systems can now be implemented within the reconfigurable hardware fabric of an FPGA, enabling these systems to maintain flexibility and achieve high performance while providing a high level of data security. The objective of this thesis was to design and analyze an FPGA-based system containing two isolated, softcore Nios processors that share data through two crypto-engines. FPGA-based single-chip cryptographic (SCC) techniques were employed to ensure proper component isolation when the design is placed on a device supporting the appropriate security primitives. Each crypto-engine is an implementation of the Advanced Encryption Standard (AES), operating in Galois/Counter Mode (GCM) for both encryption and authentication. The features of the microprocessors and architectures of the AES crypto-engines were varied with the goal of determining combinations which best target high performance, minimal hardware usage, or a combination of the two

    Design of programmable hardware security modules for enhancing blockchain based security framework

    Get PDF
    Globalization of the chip design and manufacturing industry has imposed significant threats to the hardware security of integrated circuits (ICs). It has made ICs more susceptible to various hardware attacks. Blockchain provides a trustworthy and distributed platform to store immutable records related to the evidence of intellectual property (IP) creation, authentication of provenance, and confidential data storage. However, blockchain encounters major security challenges due to its decentralized nature of ledgers that contain sensitive data. The research objective is to design a dedicated programmable hardware security modules scheme to safeguard and maintain sensitive information contained in the blockchain networks in the context of the IC supply chain. Thus, the blockchain framework could rely on the proposed hardware security modules and separate the entire cryptographic operations within the system as stand-alone hardware units. This work put forth a novel approach that could be considered and utilized to enhance blockchain security in real-time. The critical cryptographic components in blockchain secure hash algorithm-256 (SHA-256) and the elliptic curve digital signature algorithm are designed as separate entities to enhance the security of the blockchain framework. Physical unclonable functions are adopted to perform authentication of transactions in the blockchain. Relative comparison of designed modules with existing works clearly depicts the upper hand of the former in terms of performance parameters

    Reconfigurable elliptic curve cryptography

    Get PDF
    Elliptic Curve Cryptosystems (ECC) have been proposed as an alternative to other established public key cryptosystems such as RSA (Rivest Shamir Adleman). ECC provide more security per bit than other known public key schemes based on the discrete logarithm problem. Smaller key sizes result in faster computations, lower power consumption and memory and bandwidth savings, thus making ECC a fast, flexible and cost-effective solution for providing security in constrained environments. Implementing ECC on reconfigurable platform combines the speed, security and concurrency of hardware along with the flexibility of the software approach. This work proposes a generic architecture for elliptic curve cryptosystem on a Field Programmable Gate Array (FPGA) that performs an elliptic curve scalar multiplication in 1.16milliseconds for GF (2163), which is considerably faster than most other documented implementations. One of the benefits of the proposed processor architecture is that it is easily reprogrammable to use different algorithms and is adaptable to any field order. Also through reconfiguration the arithmetic unit can be optimized for different area/speed requirements. The mathematics involved uses binary extension field of the form GF (2n) as the underlying field and polynomial basis for the representation of the elements in the field. A significant gain in performance is obtained by using projective coordinates for the points on the curve during the computation process
    corecore