2,620 research outputs found

    A bibliography on parallel and vector numerical algorithms

    Get PDF
    This is a bibliography of numerical methods. It also includes a number of other references on machine architecture, programming language, and other topics of interest to scientific computing. Certain conference proceedings and anthologies which have been published in book form are listed also

    A Jacobi-based algorithm for computing symmetric eigenvalues and eigenvectors in a two-dimensional mesh

    Get PDF
    The paper proposes an algorithm for computing symmetric eigenvalues and eigenvectors that uses a one-sided Jacobi approach and is targeted to a multicomputer in which nodes can be arranged as a two-dimensional mesh with an arbitrary number of rows and columns. The algorithm is analysed through simple analytical models of execution time, which show that an adequate choice of the mesh configuration (number of rows and columns) can improve performance significantly, with respect to a one-dimensional configuration, which is the most frequently considered scenario in current proposals. This improvement is especially noticeable in large systems.Peer ReviewedPostprint (published version

    Fast Parallel Randomized QR with Column Pivoting Algorithms for Reliable Low-rank Matrix Approximations

    Full text link
    Factorizing large matrices by QR with column pivoting (QRCP) is substantially more expensive than QR without pivoting, owing to communication costs required for pivoting decisions. In contrast, randomized QRCP (RQRCP) algorithms have proven themselves empirically to be highly competitive with high-performance implementations of QR in processing time, on uniprocessor and shared memory machines, and as reliable as QRCP in pivot quality. We show that RQRCP algorithms can be as reliable as QRCP with failure probabilities exponentially decaying in oversampling size. We also analyze efficiency differences among different RQRCP algorithms. More importantly, we develop distributed memory implementations of RQRCP that are significantly better than QRCP implementations in ScaLAPACK. As a further development, we introduce the concept of and develop algorithms for computing spectrum-revealing QR factorizations for low-rank matrix approximations, and demonstrate their effectiveness against leading low-rank approximation methods in both theoretical and numerical reliability and efficiency.Comment: 11 pages, 14 figures, accepted by 2017 IEEE 24th International Conference on High Performance Computing (HiPC), awarded the best paper priz

    Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist

    Full text link
    Apache Spark is a popular system aimed at the analysis of large data sets, but recent studies have shown that certain computations---in particular, many linear algebra computations that are the basis for solving common machine learning problems---are significantly slower in Spark than when done using libraries written in a high-performance computing framework such as the Message-Passing Interface (MPI). To remedy this, we introduce Alchemist, a system designed to call MPI-based libraries from Apache Spark. Using Alchemist with Spark helps accelerate linear algebra, machine learning, and related computations, while still retaining the benefits of working within the Spark environment. We discuss the motivation behind the development of Alchemist, and we provide a brief overview of its design and implementation. We also compare the performances of pure Spark implementations with those of Spark implementations that leverage MPI-based codes via Alchemist. To do so, we use data science case studies: a large-scale application of the conjugate gradient method to solve very large linear systems arising in a speech classification problem, where we see an improvement of an order of magnitude; and the truncated singular value decomposition (SVD) of a 400GB three-dimensional ocean temperature data set, where we see a speedup of up to 7.9x. We also illustrate that the truncated SVD computation is easily scalable to terabyte-sized data by applying it to data sets of sizes up to 17.6TB.Comment: Accepted for publication in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 201

    A hierarchically blocked Jacobi SVD algorithm for single and multiple graphics processing units

    Full text link
    We present a hierarchically blocked one-sided Jacobi algorithm for the singular value decomposition (SVD), targeting both single and multiple graphics processing units (GPUs). The blocking structure reflects the levels of GPU's memory hierarchy. The algorithm may outperform MAGMA's dgesvd, while retaining high relative accuracy. To this end, we developed a family of parallel pivot strategies on GPU's shared address space, but applicable also to inter-GPU communication. Unlike common hybrid approaches, our algorithm in a single GPU setting needs a CPU for the controlling purposes only, while utilizing GPU's resources to the fullest extent permitted by the hardware. When required by the problem size, the algorithm, in principle, scales to an arbitrary number of GPU nodes. The scalability is demonstrated by more than twofold speedup for sufficiently large matrices on a Tesla S2050 system with four GPUs vs. a single Fermi card.Comment: Accepted for publication in SIAM Journal on Scientific Computin

    Three-Level Parallel J-Jacobi Algorithms for Hermitian Matrices

    Get PDF
    The paper describes several efficient parallel implementations of the one-sided hyperbolic Jacobi-type algorithm for computing eigenvalues and eigenvectors of Hermitian matrices. By appropriate blocking of the algorithms an almost ideal load balancing between all available processors/cores is obtained. A similar blocking technique can be used to exploit local cache memory of each processor to further speed up the process. Due to diversity of modern computer architectures, each of the algorithms described here may be the method of choice for a particular hardware and a given matrix size. All proposed block algorithms compute the eigenvalues with relative accuracy similar to the original non-blocked Jacobi algorithm.Comment: Submitted for publicatio
    • …
    corecore