7 research outputs found

    Structure-Aware Sampling: Flexible and Accurate Summarization

    Full text link
    In processing large quantities of data, a fundamental problem is to obtain a summary which supports approximate query answering. Random sampling yields flexible summaries which naturally support subset-sum queries with unbiased estimators and well-understood confidence bounds. Classic sample-based summaries, however, are designed for arbitrary subset queries and are oblivious to the structure in the set of keys. The particular structure, such as hierarchy, order, or product space (multi-dimensional), makes range queries much more relevant for most analysis of the data. Dedicated summarization algorithms for range-sum queries have also been extensively studied. They can outperform existing sampling schemes in terms of accuracy on range queries per summary size. Their accuracy, however, rapidly degrades when, as is often the case, the query spans multiple ranges. They are also less flexible - being targeted for range sum queries alone - and are often quite costly to build and use. In this paper we propose and evaluate variance optimal sampling schemes that are structure-aware. These summaries improve over the accuracy of existing structure-oblivious sampling schemes on range queries while retaining the benefits of sample-based summaries: flexible summaries, with high accuracy on both range queries and arbitrary subset queries

    Efficient Discovery of Association Rules and Frequent Itemsets through Sampling with Tight Performance Guarantees

    Full text link
    The tasks of extracting (top-KK) Frequent Itemsets (FI's) and Association Rules (AR's) are fundamental primitives in data mining and database applications. Exact algorithms for these problems exist and are widely used, but their running time is hindered by the need of scanning the entire dataset, possibly multiple times. High quality approximations of FI's and AR's are sufficient for most practical uses, and a number of recent works explored the application of sampling for fast discovery of approximate solutions to the problems. However, these works do not provide satisfactory performance guarantees on the quality of the approximation, due to the difficulty of bounding the probability of under- or over-sampling any one of an unknown number of frequent itemsets. In this work we circumvent this issue by applying the statistical concept of \emph{Vapnik-Chervonenkis (VC) dimension} to develop a novel technique for providing tight bounds on the sample size that guarantees approximation within user-specified parameters. Our technique applies both to absolute and to relative approximations of (top-KK) FI's and AR's. The resulting sample size is linearly dependent on the VC-dimension of a range space associated with the dataset to be mined. The main theoretical contribution of this work is a proof that the VC-dimension of this range space is upper bounded by an easy-to-compute characteristic quantity of the dataset which we call \emph{d-index}, and is the maximum integer dd such that the dataset contains at least dd transactions of length at least dd such that no one of them is a superset of or equal to another. We show that this bound is strict for a large class of datasets.Comment: 19 pages, 7 figures. A shorter version of this paper appeared in the proceedings of ECML PKDD 201

    Data mining and fusion

    No full text

    Sampling Algorithms for Evolving Datasets

    Get PDF
    Perhaps the most flexible synopsis of a database is a uniform random sample of the data; such samples are widely used to speed up the processing of analytic queries and data-mining tasks, to enhance query optimization, and to facilitate information integration. Most of the existing work on database sampling focuses on how to create or exploit a random sample of a static database, that is, a database that does not change over time. The assumption of a static database, however, severely limits the applicability of these techniques in practice, where data is often not static but continuously evolving. In order to maintain the statistical validity of the sample, any changes to the database have to be appropriately reflected in the sample. In this thesis, we study efficient methods for incrementally maintaining a uniform random sample of the items in a dataset in the presence of an arbitrary sequence of insertions, updates, and deletions. We consider instances of the maintenance problem that arise when sampling from an evolving set, from an evolving multiset, from the distinct items in an evolving multiset, or from a sliding window over a data stream. Our algorithms completely avoid any accesses to the base data and can be several orders of magnitude faster than algorithms that do rely on such expensive accesses. The improved efficiency of our algorithms comes at virtually no cost: the resulting samples are provably uniform and only a small amount of auxiliary information is associated with the sample. We show that the auxiliary information not only facilitates efficient maintenance, but it can also be exploited to derive unbiased, low-variance estimators for counts, sums, averages, and the number of distinct items in the underlying dataset. In addition to sample maintenance, we discuss methods that greatly improve the flexibility of random sampling from a system's point of view. More specifically, we initiate the study of algorithms that resize a random sample upwards or downwards. Our resizing algorithms can be exploited to dynamically control the size of the sample when the dataset grows or shrinks; they facilitate resource management and help to avoid under- or oversized samples. Furthermore, in large-scale databases with data being distributed across several remote locations, it is usually infeasible to reconstruct the entire dataset for the purpose of sampling. To address this problem, we provide efficient algorithms that directly combine the local samples maintained at each location into a sample of the global dataset. We also consider a more general problem, where the global dataset is defined as an arbitrary set or multiset expression involving the local datasets, and provide efficient solutions based on hashing

    Efficient data reduction with EASE

    Full text link

    Efficient Data Reduction with EASE

    No full text
    A variety of mining and analysis problems --- ranging from association-rule discovery to contingency table analysis to materialization of certain approximate datacubes --- involve the extraction of knowledge from a set of categorical count data. Such data can be viewed as a collection of "transactions, " where a transaction is a fixed-length vector of counts. Classical algorithms for solving count-data problems require one or more computationally intensive passes over the entire database and can be prohibitively slow. One e#ective method for dealing with this ever-worsening scalability problem is to run the algorithms on a small sample of the data. We present a new data-reduction algorithm, called ease, for producing such a sample. Like the fast algorithm introduced by Chen et al., ease is especially designed for count data applications. Both ease and fast take a relatively large initial random sample and then deterministically produce a subsample whose "distance" --- appropriately defined --- from the complete database is minimal. Unlike fast, which obtains the final subsample by quasi-greedy descent, ease uses epsilon-approximation methods to obtain the final subsample by a process of repeated halving. Experiments both in the context of association rule mining and classical contingency-table analysis show that ease outperforms both fast and simple random sampling, sometimes dramatically. Categories and Subject Descriptors H.2.8 [Database Management]: Database Applications - Data Mining NSF CAREER Grant CCR-0133599
    corecore