65,974 research outputs found

    Efficient computation of quasiperiodic oscillations in nonlinear systems with fast rotating parts

    Get PDF
    We present a numerical method for the investigation of quasiperiodic oscillations in applications modeled by systems of ordinary differential equations. We focus on systems with parts that have a significant rotational speed. An important element of our approach is to change coordinates into a co-rotating frame. We show that this leads to a dramatic reduction of computational effort in the case that gravitational forces can be neglected. As a practical example we study a turbocharger model for which we give a thorough comparison of results for a model with and without gravitational forces

    An efficient nonlinear circuit simulation technique

    Get PDF
    This paper proposes a novel method for the analysis and simulation of integrated circuits (ICs) with the potential to greatly shorten the IC design cycle. The circuits are assumed to be subjected to input signals that have widely separated rates of variation, e.g., in communication systems, an RF carrier modulated by a low-frequency information signal. The proposed technique involves two stages. Initially, a particular order result for the circuit response is obtained using a multiresolution collocation scheme involving cubic spline wavelet decomposition. A more accurate solution is then obtained by adding another layer to the wavelet series approximation. However, the novel technique presented here enables the reuse of results acquired in the first stage to obtain the second-stage result. Therefore, vast gains in efficiency are obtained. Furthermore, a nonlinear model-order reduction technique can readily be used in both stages making the calculations even more efficient. Results will highlight the efficacy of the proposed approac

    Time Domain Computation of a Nonlinear Nonlocal Cochlear Model with Applications to Multitone Interaction in Hearing

    Full text link
    A nonlinear nonlocal cochlear model of the transmission line type is studied in order to capture the multitone interactions and resulting tonal suppression effects. The model can serve as a module for voice signal processing, it is a one dimensional (in space) damped dispersive nonlinear PDE based on mechanics and phenomenology of hearing. It describes the motion of basilar membrane (BM) in the cochlea driven by input pressure waves. Both elastic damping and selective longitudinal fluid damping are present. The former is nonlinear and nonlocal in BM displacement, and plays a key role in capturing tonal interactions. The latter is active only near the exit boundary (helicotrema), and is built in to damp out the remaining long waves. The initial boundary value problem is numerically solved with a semi-implicit second order finite difference method. Solutions reach a multi-frequency quasi-steady state. Numerical results are shown on two tone suppression from both high-frequency and low-frequency sides, consistent with known behavior of two tone suppression. Suppression effects among three tones are demonstrated by showing how the response magnitudes of the fixed two tones are reduced as we vary the third tone in frequency and amplitude. We observe qualitative agreement of our model solutions with existing cat auditory neural data. The model is thus simple and efficient as a processing tool for voice signals.Comment: 23 pages,7 figures; added reference

    PID control system analysis and design

    Get PDF
    With its three-term functionality offering treatment of both transient and steady-state responses, proportional-integral-derivative (PID) control provides a generic and efficient solution to realworld control problems. The wide application of PID control has stimulated and sustained research and development to "get the best out of PID", and "the search is on to find the next key technology or methodology for PID tuning". This article presents remedies for problems involving the integral and derivative terms. PID design objectives, methods, and future directions are discussed. Subsequently, a computerized, simulation-based approach is presented, together with illustrative design results for first-order, higher order, and nonlinear plants. Finally, we discuss differences between academic research and industrial practice, so as to motivate new research directions in PID control

    Transmitting a signal by amplitude modulation in a chaotic network

    Full text link
    We discuss the ability of a network with non linear relays and chaotic dynamics to transmit signals, on the basis of a linear response theory developed by Ruelle \cite{Ruelle} for dissipative systems. We show in particular how the dynamics interfere with the graph topology to produce an effective transmission network, whose topology depends on the signal, and cannot be directly read on the ``wired'' network. This leads one to reconsider notions such as ``hubs''. Then, we show examples where, with a suitable choice of the carrier frequency (resonance), one can transmit a signal from a node to another one by amplitude modulation, \textit{in spite of chaos}. Also, we give an example where a signal, transmitted to any node via different paths, can only be recovered by a couple of \textit{specific} nodes. This opens the possibility for encoding data in a way such that the recovery of the signal requires the knowledge of the carrier frequency \textit{and} can be performed only at some specific node.Comment: 19 pages, 13 figures, submitted (03-03-2005

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page
    • …
    corecore