13,715 research outputs found

    Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    Get PDF
    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations

    A dilating vortex particle method for compressible flow

    Get PDF
    Vortex methods have become useful tools for the computation of incompressible fluid flow. In this work, a vortex particle method for the simulation of unsteady two-dimensional compressible flow is developed. By decomposing the velocity into irrotational and solenoidal parts, and using particles that are able to change volume and that carry vorticity, dilatation, enthalpy, entropy and density, the equations of motion are satisfied. Spatial derivatives are treated using the method of particle strength exchange with high-order-accurate, non-dissipative kernels. The new vortex method is applied to co-rotating and leapfrogging vortices in compressible flow, with the far acoustic field computed using a two-dimensional Kirchhoff surface
    • …
    corecore