413 research outputs found

    Sifting convolution on the sphere

    Get PDF
    A novel spherical convolution is defined through the sifting property of the Dirac delta on the sphere. The so-called sifting convolution is defined by the inner product of one function with a translated version of another, but with the adoption of an alternative translation operator on the sphere. This translation operator follows by analogy with the Euclidean translation when viewed in harmonic space. The sifting convolution satisfies a variety of desirable properties that are lacking in alternate definitions, namely: it supports directional kernels; it has an output which remains on the sphere; and is efficient to compute. An illustration of the sifting convolution on a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering, while its output remains on the sphere

    Scale-discretised ridgelet transform on the sphere

    Get PDF
    We revisit the spherical Radon transform, also called the Funk-Radon transform, viewing it as an axisymmetric convolution on the sphere. Viewing the spherical Radon transform in this manner leads to a straightforward derivation of its spherical harmonic representation, from which we show the spherical Radon transform can be inverted exactly for signals exhibiting antipodal symmetry. We then construct a spherical ridgelet transform by composing the spherical Radon and scale-discretised wavelet transforms on the sphere. The resulting spherical ridgelet transform also admits exact inversion for antipodal signals. The restriction to antipodal signals is expected since the spherical Radon and ridgelet transforms themselves result in signals that exhibit antipodal symmetry. Our ridgelet transform is defined natively on the sphere, probes signal content globally along great circles, does not exhibit blocking artefacts, supports spin signals and exhibits an exact and explicit inverse transform. No alternative ridgelet construction on the sphere satisfies all of these properties. Our implementation of the spherical Radon and ridgelet transforms is made publicly available. Finally, we illustrate the effectiveness of spherical ridgelets for diffusion magnetic resonance imaging of white matter fibers in the brain.Comment: 5 pages, 4 figures, matches version accepted by EUSIPCO, code available at http://www.s2let.or

    Spatio-spectral analysis on the unit sphere

    No full text
    This thesis is focussed on the development of new signal processing techniques to analyse signals defined on the sphere. Analysis and processing of signals defined on the sphere find applications in various fields of science and engineering, such as cosmology, geophysics and medical imaging. The objective to develop new signal processing methods is served by formulating, extending and tailoring existing Euclidean domain signal processing theories in ways that they become suitable for analysis of signals defined on the sphere. The first part of this thesis develops a new type of convolution between two signals on the sphere. This is the first type of convolution on the sphere which is commutative. Two other advantages, in comparison with existing definitions in the literature, are that the new convolution admits anisotropic filters and signals and the domain of the output remains on the sphere. The spectral analysis of the convolution is provided and a fast algorithm for efficient computation of convolution output is developed. The second part of the thesis is focused on the development of signal processing techniques to analyse signals on the sphere in joint spatio-spectral~(spatial-spectral) domain. A transform analogous to short-time Fourier transform(STFT) in time-frequency analysis is formulated for signals defined on the sphere, in order to devise a spatio-spectral representation of a signal. The proposed transform is referred as the spatially localized spherical harmonic transform~(SLSHT) and is defined as windowed spherical harmonic transform, resulting in the SLSHT distribution. The properties of the SLSHT distribution and its analysis in the spherical harmonic domain are also provided. Furthermore, examples are provided to demonstrate the capability of SLSHT to reveal spatially localized spectral contents in a signal that were not obtainable from traditional spherical harmonics analysis. With the consideration that data-sets on the sphere can be of considerable size and the SLSHT is intrinsically computationally demanding depending on the band-limits of the signal and window, a fast algorithm for the efficient computation of the transform is developed. The floating point precision numerical accuracy of the fast algorithm is demonstrated and a full numerical complexity analysis is presented. A general framework for spatially-varying spectral filtering of signals defined on the unit sphere is also developed, as an analogy to joint time-frequency filtering. For spatio-spectral filtering, the spherical signals are first mapped from the spatial domain into a joint spatio-spectral domain using SLSHT, where a spatio-spectral signal transformation or modification is introduced. Next, a suitable scheme to transform the modified signal from the spatio-spectral domain back to an admissible signal in the spatial domain using the least squares approach is proposed. It is shown that the overall action of the SLSHT and spatio-spectral signal modification can be described through a single transformation matrix, which is useful in practice. Finally, two specific and useful instances of spatially-varying spectral filtering are presented, defined through multiplicative and convolutive modification of the SLSHT distribution. The proposed framework enables filtering or modification in the spatio-spectral domain which cannot be carried out in either the spatial or spectral domain

    Slepian Wavelets for the Analysis of Incomplete Data on Manifolds

    Get PDF
    Many fields in science and engineering measure data that inherently live on non-Euclidean geometries, such as the sphere. Techniques developed in the Euclidean setting must be extended to other geometries. Due to recent interest in geometric deep learning, analogues of Euclidean techniques must also handle general manifolds or graphs. Often, data are only observed over partial regions of manifolds, and thus standard whole-manifold techniques may not yield accurate predictions. In this thesis, a new wavelet basis is designed for datasets like these. Although many definitions of spherical convolutions exist, none fully emulate the Euclidean definition. A novel spherical convolution is developed, designed to tackle the shortcomings of existing methods. The so-called sifting convolution exploits the sifting property of the Dirac delta and follows by the inner product of a function with the translated version of another. This translation operator is analogous to the Euclidean translation in harmonic space and exhibits some useful properties. In particular, the sifting convolution supports directional kernels; has an output that remains on the sphere; and is efficient to compute. The convolution is entirely generic and thus may be used with any set of basis functions. An application of the sifting convolution with a topographic map of the Earth demonstrates that it supports directional kernels to perform anisotropic filtering. Slepian wavelets are built upon the eigenfunctions of the Slepian concentration problem of the manifold - a set of bandlimited functions which are maximally concentrated within a given region. Wavelets are constructed through a tiling of the Slepian harmonic line by leveraging the existing scale-discretised framework. A straightforward denoising formalism demonstrates a boost in signal-to-noise for both a spherical and general manifold example. Whilst these wavelets were inspired by spherical datasets, like in cosmology, the wavelet construction may be utilised for manifold or graph data

    Fast directional spatially localized spherical harmonic transform

    Get PDF
    We propose a transform for signals defined on the sphere that reveals their localized directional content in the spatio-spectral domain when used in conjunction with an asymmetric window function. We call this transform the directional spatially localized spherical harmonic transform (directional SLSHT) which extends the SLSHT from the literature whose usefulness is limited to symmetric windows. We present an inversion relation to synthesize the original signal from its directional-SLSHT distribution for an arbitrary window function. As an example of an asymmetric window, the most concentrated band-limited eigenfunction in an elliptical region on the sphere is proposed for directional spatio-spectral analysis and its effectiveness is illustrated on the synthetic and Mars topographic data-sets. Finally, since such typical data-sets on the sphere are of considerable size and the directional SLSHT is intrinsically computationally demanding depending on the band-limits of the signal and window, a fast algorithm for the efficient computation of the transform is developed. The floating point precision numerical accuracy of the fast algorithm is demonstrated and a full numerical complexity analysis is presented.Comment: 12 pages, 5 figure

    Left-invariant diffusions on R^3 x S^2 and their application to crossing-preserving smoothing on HARDI-images

    Get PDF
    In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this article we study left-invariant diffusion on the 3D Euclidean motion group SE(3) and its application to crossing-preserving smoothing of high angular resolution diffusion imaging (HARDI), which is a recent magnetic resonance imaging (MRI) technique for imaging water diffusion processes in fibrous tissues such as brain white matter and muscles. The linear left-invariant (convection-)diffusions are forward Kolmogorov equations of Brownian motions on the space R3 o S2 of positions and orientations embedded in SE(3) and can be solved by R3 o S2-convolution with the corresponding Green’s functions. We provide analytic approximation formulae and explicit sharp Gaussian estimates for these Green’s functions. In our design and analysis for appropriate (non-linear) convection-diffusions on HARDI-data we put emphasis on the underlying differential geometry on SE(3). We write our left-invariant diffusions in covariant derivatives on SE(3) using the Cartan-connection. This Cartan-connection has constant curvature and constant torsion, and so have the exponential curves which are the auto-parallels along which our left-invariant diffusion takes place. We provide experiments of our crossing-preserving Euclidean-invariant diffusions on artificial HARDI-data containing crossing-fibers

    Efficient Spatially Adaptive Convolution and Correlation

    Get PDF
    Fast methods for convolution and correlation underlie a variety of applications in computer vision and graphics, including efficient filtering, analysis, and simulation. However, standard convolution and correlation are inherently limited to fixed filters: spatial adaptation is impossible without sacrificing efficient computation. In early work, Freeman and Adelson have shown how steerable filters can address this limitation, providing a way for rotating the filter as it is passed over the signal. In this work, we provide a general, representation-theoretic, framework that allows for spatially varying linear transformations to be applied to the filter. This framework allows for efficient implementation of extended convolution and correlation for transformation groups such as rotation (in 2D and 3D) and scale, and provides a new interpretation for previous methods including steerable filters and the generalized Hough transform. We present applications to pattern matching, image feature description, vector field visualization, and adaptive image filtering

    Learning Equivariant Representations

    Get PDF
    State-of-the-art deep learning systems often require large amounts of data and computation. For this reason, leveraging known or unknown structure of the data is paramount. Convolutional neural networks (CNNs) are successful examples of this principle, their defining characteristic being the shift-equivariance. By sliding a filter over the input, when the input shifts, the response shifts by the same amount, exploiting the structure of natural images where semantic content is independent of absolute pixel positions. This property is essential to the success of CNNs in audio, image and video recognition tasks. In this thesis, we extend equivariance to other kinds of transformations, such as rotation and scaling. We propose equivariant models for different transformations defined by groups of symmetries. The main contributions are (i) polar transformer networks, achieving equivariance to the group of similarities on the plane, (ii) equivariant multi-view networks, achieving equivariance to the group of symmetries of the icosahedron, (iii) spherical CNNs, achieving equivariance to the continuous 3D rotation group, (iv) cross-domain image embeddings, achieving equivariance to 3D rotations for 2D inputs, and (v) spin-weighted spherical CNNs, generalizing the spherical CNNs and achieving equivariance to 3D rotations for spherical vector fields. Applications include image classification, 3D shape classification and retrieval, panoramic image classification and segmentation, shape alignment and pose estimation. What these models have in common is that they leverage symmetries in the data to reduce sample and model complexity and improve generalization performance. The advantages are more significant on (but not limited to) challenging tasks where data is limited or input perturbations such as arbitrary rotations are present
    • …
    corecore