21 research outputs found

    Efficient Compilation of a Class of Variational Forms

    Full text link
    We investigate the compilation of general multilinear variational forms over affines simplices and prove a representation theorem for the representation of the element tensor (element stiffness matrix) as the contraction of a constant reference tensor and a geometry tensor that accounts for geometry and variable coefficients. Based on this representation theorem, we design an algorithm for efficient pretabulation of the reference tensor. The new algorithm has been implemented in the FEniCS Form Compiler (FFC) and improves on a previous loop-based implementation by several orders of magnitude, thus shortening compile-times and development cycles for users of FFC.Comment: ACM Transactions on Mathematical Software 33(3), 20 pages (2007

    Automated code generation for discontinuous Galerkin methods

    Full text link
    A compiler approach for generating low-level computer code from high-level input for discontinuous Galerkin finite element forms is presented. The input language mirrors conventional mathematical notation, and the compiler generates efficient code in a standard programming language. This facilitates the rapid generation of efficient code for general equations in varying spatial dimensions. Key concepts underlying the compiler approach and the automated generation of computer code are elaborated. The approach is demonstrated for a range of common problems, including the Poisson, biharmonic, advection--diffusion and Stokes equations

    Unified Framework for Finite Element Assembly

    Full text link
    At the heart of any finite element simulation is the assembly of matrices and vectors from discrete variational forms. We propose a general interface between problem-specific and general-purpose components of finite element programs. This interface is called Unified Form-assembly Code (UFC). A wide range of finite element problems is covered, including mixed finite elements and discontinuous Galerkin methods. We discuss how the UFC interface enables implementations of variational form evaluation to be independent of mesh and linear algebra components. UFC does not depend on any external libraries, and is released into the public domain

    Algorithms and Data Structures for Multi-Adaptive Time-Stepping

    Full text link
    Multi-adaptive Galerkin methods are extensions of the standard continuous and discontinuous Galerkin methods for the numerical solution of initial value problems for ordinary or partial differential equations. In particular, the multi-adaptive methods allow individual and adaptive time steps to be used for different components or in different regions of space. We present algorithms for efficient multi-adaptive time-stepping, including the recursive construction of time slabs and adaptive time step selection. We also present data structures for efficient storage and interpolation of the multi-adaptive solution. The efficiency of the proposed algorithms and data structures is demonstrated for a series of benchmark problems.Comment: ACM Transactions on Mathematical Software 35(3), 24 pages (2008

    DOLFIN: Automated Finite Element Computing

    Get PDF
    We describe here a library aimed at automating the solution of partial differential equations using the finite element method. By employing novel techniques for automated code generation, the library combines a high level of expressiveness with efficient computation. Finite element variational forms may be expressed in near mathematical notation, from which low-level code is automatically generated, compiled and seamlessly integrated with efficient implementations of computational meshes and high-performance linear algebra. Easy-to-use object-oriented interfaces to the library are provided in the form of a C++ library and a Python module. This paper discusses the mathematical abstractions and methods used in the design of the library and its implementation. A number of examples are presented to demonstrate the use of the library in application code
    corecore