813 research outputs found

    Cryptanalysis of a Provably Secure Gateway-Oriented Password-Based Authenticated Key Exchange Protocol

    Get PDF
    Recently, Chien et al. proposed a gateway-oriented password-based authenticated key exchange (GPAKE) protocol, through which a client and a gateway could generate a session key for future communication with the help of an authentication server. They also demonstrated that their scheme is provably secure in a formal model. However, in this letter, we will show that Chien et al.’s protocol is vulnerable to the off-line password guessing attack. To overcome the weakness, we also propose an efficient countermeasure

    One-Round Protocol for Two-Party Verifier-Based Password-Authenticated Key Exchange

    Get PDF
    Abstract. Password-authenticated key exchange (PAKE) for two-party allows a client and a server communicating over a public network to share a session key using a human-memorable password only. PAKE protocols can be served as basic building blocks for constructing secure, complex, and higher-level protocols which were initially built upon the Transport Layer Security (TLS) protocol. In this paper, we propose a provablysecure verifier-based PAKE protocol well suited with the TLS protocol which requires only a single round. The protocol is secure against attacks using compromised server's password file and known-key attacks, and provides forward secrecy, which is analyzed in the ideal hash model. This scheme matches the most efficient verifier-based PAKE protocol among those found in the literature. It is the first provably-secure one-round protocol for verifier-based PAKE in the two-party setting

    Session Initiation Protocol Attacks and Challenges

    Full text link
    In recent years, Session Initiation Protocol (SIP) has become widely used in current internet protocols. It is a text-based protocol much like Hyper Text Transport Protocol (HTTP) and Simple Mail Transport Protocol (SMTP). SIP is a strong enough signaling protocol on the internet for establishing, maintaining, and terminating session. In this paper the areas of security and attacks in SIP are discussed. We consider attacks from diverse related perspectives. The authentication schemes are compared, the representative existing solutions are highlighted, and several remaining research challenges are identified. Finally, the taxonomy of SIP threat will be presented

    Analysis of two pairing-based three-party password authenticated key exchange protocols

    Get PDF
    Password-Authenticated Key Exchange (PAKE) protocols allow parties to share secret keys in an authentic manner based on an easily memorizable password. Recently, Nam et al. showed that a provably secure three-party password-based authenticated key exchange protocol using Weil pairing by Wen et al. is vulnerable to a man-in-the-middle attack. In doing so, Nam et al. showed the flaws in the proof of Wen et al. and described how to fix the problem so that their attack no longer works. In this paper, we show that both Wen et al. and Nam et al. variants fall to key compromise impersonation by any adversary. Our results underline the fact that although the provable security approach is necessary to designing PAKEs, gaps still exist between what can be proven and what are really secure in practice

    Input-shrinking functions: theory and application

    Get PDF
    In this thesis, we contribute to the emerging field of the Leakage-Resilient Cryptography by studying the problem of secure data storage on hardware that may leak information, introducing a new primitive, a leakage-resilient storage, and showing two different constructions of such storage scheme provably secure against a class of leakage functions that can depend only on some restricted part of the memory and against a class of computationally weak leakage functions, e.g. functions computable by small circuits, respectively. Our results come with instantiations and analysis of concrete parameters. Furthermore, as second contribution, we present our implementation in C programming language, using the cryptographic library of the OpenSSL project, of a two-party Authenticated Key Exchange (AKE) protocol, which allows a client and a server, who share a huge secret file, to securely compute a shared key, providing client-to-server authentication, also in the presence of active attackers. Following the work of Cash et al. (TCC 2007), we based our construction on a Weak Key Exchange (WKE) protocol, developed in the BRM, and a Password-based Authenticated Key Exchange (PAKE) protocol secure in the Universally Composable (UC) framework. The WKE protocol showed by Cash et al. uses an explicit construction of averaging sampler, which uses less random bits than the random choice but does not seem to be efficiently implementable in practice. In this thesis, we propose a WKE protocol similar but simpler than that one of Cash et al.: our protocol uses more randomness than the Cash et al.'s one, as it simply uses random choice instead of averaging sampler, but we are able to show an efficient implementation of it. Moreover, we formally adapt the security analysis of the WKE protocol of Cash et al. to our WKE protocol. To complete our AKE protocol, we implement the PAKE protocol showed secure in the UC framework by Abdalla et al. (CT-RSA 2008), which is more efficient than the Canetti et al.'s UC-PAKE protocol (EuroCrypt 2005) used in Cash et al.'s work. In our implementation of the WKE protocol, to achieve small constant communication complexity and amount of randomness, we rely on the Random Oracle (RO) model. However, we would like to note that in our implementation of the AKE protocol we need also a UC-PAKE protocol which already relies on RO, as it is impossible to achieve UC-PAKE in the standard model. In our work we focus not only on the theoretical aspects of the area, providing formal models and proofs, but also on the practical ones, analyzing instantiations, concrete parameters and implementation of the proposed solutions, to contribute to bridge the gap between theory and practice in this field

    A new framework for efficient password-based authenticated key exchange

    Full text link
    Protocols for password-based authenticated key exchange (PAKE) allow two users who share only a short, low-entropy password to agree on a cryptographically strong session key. The challenge in designing such protocols is that they must be immune to off-line dictionary attacks in which an eavesdropping adversary exhaustively enumerates the dictionary of likely passwords in an attempt to match a password to the set of observed transcripts. To date, few general frameworks for constructing PAKE protocols in the standard model are known. Here, we abstract and generalize a protocol by Jiang and Gong to give a new methodology for realizing PAKE without random oracles, in the common reference string model. In addition to giving a new approach to the problem, the resulting construction offers several advantages over prior work. We also describe an extension of our protocol that is secure within the universal composability (UC) framework and, when instantiated using El Gamal encryption, is more efficient than a previous protocol of Canetti et al.
    corecore