103 research outputs found

    Spartus: A 9.4 TOp/s FPGA-Based LSTM Accelerator Exploiting Spatio-Temporal Sparsity

    Full text link

    Spartus: A 9.4 TOp/s FPGA-based LSTM Accelerator Exploiting Spatio-Temporal Sparsity

    Full text link
    Long Short-Term Memory (LSTM) recurrent networks are frequently used for tasks involving time-sequential data such as speech recognition. Unlike previous LSTM accelerators that either exploit spatial weight sparsity or temporal activation sparsity, this paper proposes a new accelerator called "Spartus" that exploits spatio-temporal sparsity to achieve ultralow latency inference. Spatial sparsity is induced using a new Column-Balanced Targeted Dropout (CBTD) structured pruning method, which produces structured sparse weight matrices for balanced workloads. The pruned networks running on Spartus hardware achieve weight sparsity of up to 96% and 94% with negligible accuracy loss on the TIMIT and the Librispeech datasets. To induce temporal sparsity in LSTM, we extend the previous DeltaGRU method to the DeltaLSTM method. Combining spatio-temporal sparsity with CBTD and DeltaLSTM saves on weight memory access and associated arithmetic operations. The Spartus architecture is scalable and supports real-time online speech recognition when implemented on small and large FPGAs. Spartus per-sample latency for a single DeltaLSTM layer of 1024 neurons averages 1 us. Exploiting spatio-temporal sparsity leads to 46X speedup of Spartus over its theoretical hardware performance to achieve 9.4 TOp/s effective batch-1 throughput and 1.1 TOp/s/W power efficiency.Comment: Preprint. Under revie

    Energy-Efficient Recurrent Neural Network Accelerators for Real-Time Inference

    Full text link
    Over the past decade, Deep Learning (DL) and Deep Neural Network (DNN) have gone through a rapid development. They are now vastly applied to various applications and have profoundly changed the life of hu- man beings. As an essential element of DNN, Recurrent Neural Networks (RNN) are helpful in processing time-sequential data and are widely used in applications such as speech recognition and machine translation. RNNs are difficult to compute because of their massive arithmetic operations and large memory footprint. RNN inference workloads used to be executed on conventional general-purpose processors including Central Processing Units (CPU) and Graphics Processing Units (GPU); however, they have un- necessary hardware blocks for RNN computation such as branch predictor, caching system, making them not optimal for RNN processing. To accelerate RNN computations and outperform the performance of conventional processors, previous work focused on optimization methods on both software and hardware. On the software side, previous works mainly used model compression to reduce the memory footprint and the arithmetic operations of RNNs. On the hardware side, previous works also designed domain-specific hardware accelerators based on Field Pro- grammable Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) with customized hardware pipelines optimized for efficient pro- cessing of RNNs. By following this software-hardware co-design strategy, previous works achieved at least 10X speedup over conventional processors. Many previous works focused on achieving high throughput with a large batch of input streams. However, in real-time applications, such as gaming Artificial Intellegence (AI), dynamical system control, low latency is more critical. Moreover, there is a trend of offloading neural network workloads to edge devices to provide a better user experience and privacy protection. Edge devices, such as mobile phones and wearable devices, are usually resource-constrained with a tight power budget. They require RNN hard- ware that is more energy-efficient to realize both low-latency inference and long battery life. Brain neurons have sparsity in both the spatial domain and time domain. Inspired by this human nature, previous work mainly explored model compression to induce spatial sparsity in RNNs. The delta network algorithm alternatively induces temporal sparsity in RNNs and can save over 10X arithmetic operations in RNNs proven by previous works. In this work, we have proposed customized hardware accelerators to exploit temporal sparsity in Gated Recurrent Unit (GRU)-RNNs and Long Short-Term Memory (LSTM)-RNNs to achieve energy-efficient real-time RNN inference. First, we have proposed DeltaRNN, the first-ever RNN accelerator to exploit temporal sparsity in GRU-RNNs. DeltaRNN has achieved 1.2 TOp/s effective throughput with a batch size of 1, which is 15X higher than its related works. Second, we have designed EdgeDRNN to accelerate GRU-RNN edge inference. Compared to DeltaRNN, EdgeDRNN does not rely on on-chip memory to store RNN weights and focuses on reducing off-chip Dynamic Random Access Memory (DRAM) data traffic using a more scalable architecture. EdgeDRNN have realized real-time inference of large GRU-RNNs with submillisecond latency and only 2.3 W wall plug power consumption, achieving 4X higher energy efficiency than commercial edge AI platforms like NVIDIA Jetson Nano. Third, we have used DeltaRNN to realize the first-ever continuous speech recognition sys- tem with the Dynamic Audio Sensor (DAS) as the front-end. The DAS is a neuromorphic event-driven sensor that produces a stream of asyn- chronous events instead of audio data sampled at a fixed sample rate. We have also showcased how an RNN accelerator can be integrated with an event-driven sensor on the same chip to realize ultra-low-power Keyword Spotting (KWS) on the extreme edge. Fourth, we have used EdgeDRNN to control a powered robotic prosthesis using an RNN controller to replace a conventional proportional–derivative (PD) controller. EdgeDRNN has achieved 21 μs latency of running the RNN controller and could maintain stable control of the prosthesis. We have used DeltaRNN and EdgeDRNN to solve these problems to prove their value in solving real-world problems. Finally, we have applied the delta network algorithm on LSTM-RNNs and have combined it with a customized structured pruning method, called Column-Balanced Targeted Dropout (CBTD), to induce spatio-temporal sparsity in LSTM-RNNs. Then, we have proposed another FPGA-based accelerator called Spartus, the first RNN accelerator that exploits spatio- temporal sparsity. Spartus achieved 9.4 TOp/s effective throughput with a batch size of 1, the highest among present FPGA-based RNN accelerators with a power budget around 10 W. Spartus can complete the inference of an LSTM layer having 5 million parameters within 1 μs

    Balanced Sparsity for Efficient DNN Inference on GPU

    Full text link
    In trained deep neural networks, unstructured pruning can reduce redundant weights to lower storage cost. However, it requires the customization of hardwares to speed up practical inference. Another trend accelerates sparse model inference on general-purpose hardwares by adopting coarse-grained sparsity to prune or regularize consecutive weights for efficient computation. But this method often sacrifices model accuracy. In this paper, we propose a novel fine-grained sparsity approach, balanced sparsity, to achieve high model accuracy with commercial hardwares efficiently. Our approach adapts to high parallelism property of GPU, showing incredible potential for sparsity in the widely deployment of deep learning services. Experiment results show that balanced sparsity achieves up to 3.1x practical speedup for model inference on GPU, while retains the same high model accuracy as fine-grained sparsity

    EdgeDRNN: Enabling Low-latency Recurrent Neural Network Edge Inference

    Full text link
    This paper presents a Gated Recurrent Unit (GRU) based recurrent neural network (RNN) accelerator called EdgeDRNN designed for portable edge computing. EdgeDRNN adopts the spiking neural network inspired delta network algorithm to exploit temporal sparsity in RNNs. It reduces off-chip memory access by a factor of up to 10x with tolerable accuracy loss. Experimental results on a 10 million parameter 2-layer GRU-RNN, with weights stored in DRAM, show that EdgeDRNN computes them in under 0.5 ms. With 2.42 W wall plug power on an entry level USB powered FPGA board, it achieves latency comparable with a 92 W Nvidia 1080 GPU. It outperforms NVIDIA Jetson Nano, Jetson TX2 and Intel Neural Compute Stick 2 in latency by 6X. For a batch size of 1, EdgeDRNN achieves a mean effective throughput of 20.2 GOp/s and a wall plug power efficiency that is over 4X higher than all other platforms.Comment: This paper has been accepted for publication at the IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genoa, 202

    Intrinsic sparse LSTM using structured targeted dropout for efficient hardware inference

    Full text link
    Recurrent Neural Networks (RNNs) are useful for speech recognition but their fully-connected structure leads to a large memory footprint, making it difficult to deploy them on resource-constrained embedded systems. Previous structured RNN pruning methods can effectively reduce RNN size; however, it is difficult to find a good balance between high sparsity and high task accuracy or the pruned models only lead to moderate speedup on custom hardware accelerators. This work proposes a novel structured pruning method called Structure Targeted Dropout (STD)-Intrinsic Sparse Structures (ISS) that stochastically drops grouped rows and columns of the weight matrices during training. The compressed networks are equivalent to a smaller dense network, which can be efficiently processed by Graphics Processing Units (GPUs). STD-ISS is evaluated on the TIMIT phone recognition task using Long Short-Term Memory (LSTM) RNNs. It outperforms previous state-of-the-art hardware-friendly methods on both accuracy and compression ratio. STD-ISS achieves a size compression ratio of up to 50× with <1% accuracy loss, leading to a 19.1× speedup on the embedded Jetson Xavier NX GPU platform
    corecore