2,558 research outputs found

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Σ1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Σ1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE

    Separating regular languages with two quantifier alternations

    Full text link
    We investigate a famous decision problem in automata theory: separation. Given a class of language C, the separation problem for C takes as input two regular languages and asks whether there exists a third one which belongs to C, includes the first one and is disjoint from the second. Typically, obtaining an algorithm for separation yields a deep understanding of the investigated class C. This explains why a lot of effort has been devoted to finding algorithms for the most prominent classes. Here, we are interested in classes within concatenation hierarchies. Such hierarchies are built using a generic construction process: one starts from an initial class called the basis and builds new levels by applying generic operations. The most famous one, the dot-depth hierarchy of Brzozowski and Cohen, classifies the languages definable in first-order logic. Moreover, it was shown by Thomas that it corresponds to the quantifier alternation hierarchy of first-order logic: each level in the dot-depth corresponds to the languages that can be defined with a prescribed number of quantifier blocks. Finding separation algorithms for all levels in this hierarchy is among the most famous open problems in automata theory. Our main theorem is generic: we show that separation is decidable for the level 3/2 of any concatenation hierarchy whose basis is finite. Furthermore, in the special case of the dot-depth, we push this result to the level 5/2. In logical terms, this solves separation for Σ3\Sigma_3: first-order sentences having at most three quantifier blocks starting with an existential one

    Separation for dot-depth two

    Get PDF
    The dot-depth hierarchy of Brzozowski and Cohen classifies the star-free languages of finite words. By a theorem of McNaughton and Papert, these are also the first-order definable languages. The dot-depth rose to prominence following the work of Thomas, who proved an exact correspondence with the quantifier alternation hierarchy of first-order logic: each level in the dot-depth hierarchy consists of all languages that can be defined with a prescribed number of quantifier blocks. One of the most famous open problems in automata theory is to settle whether the membership problem is decidable for each level: is it possible to decide whether an input regular language belongs to this level? Despite a significant research effort, membership by itself has only been solved for low levels. A recent breakthrough was achieved by replacing membership with a more general problem: separation. Given two input languages, one has to decide whether there exists a third language in the investigated level containing the first language and disjoint from the second. The motivation is that: (1) while more difficult, separation is more rewarding (2) it provides a more convenient framework (3) all recent membership algorithms are reductions to separation for lower levels. We present a separation algorithm for dot-depth two. While this is our most prominent application, our result is more general. We consider a family of hierarchies that includes the dot-depth: concatenation hierarchies. They are built via a generic construction process. One first chooses an initial class, the basis, which is the lowest level in the hierarchy. Further levels are built by applying generic operations. Our main theorem states that for any concatenation hierarchy whose basis is finite, separation is decidable for level one. In the special case of the dot-depth, this can be lifted to level two using previously known results

    The Complexity of Separation for Levels in Concatenation Hierarchies

    Get PDF
    We investigate the complexity of the separation problem associated to classes of regular languages. For a class C, C-separation takes two regular languages as input and asks whether there exists a third language in C which includes the first and is disjoint from the second. First, in contrast with the situation for the classical membership problem, we prove that for most classes C, the complexity of C-separation does not depend on how the input languages are represented: it is the same for nondeterministic finite automata and monoid morphisms. Then, we investigate specific classes belonging to finitely based concatenation hierarchies. It was recently proved that the problem is always decidable for levels 1/2 and 1 of any such hierarchy (with inefficient algorithms). Here, we build on these results to show that when the alphabet is fixed, there are polynomial time algorithms for both levels. Finally, we investigate levels 3/2 and 2 of the famous Straubing-Th\'erien hierarchy. We show that separation is PSPACE-complete for level 3/2 and between PSPACE-hard and EXPTIME for level 2

    Languages of Dot-depth One over Infinite Words

    Full text link
    Over finite words, languages of dot-depth one are expressively complete for alternation-free first-order logic. This fragment is also known as the Boolean closure of existential first-order logic. Here, the atomic formulas comprise order, successor, minimum, and maximum predicates. Knast (1983) has shown that it is decidable whether a language has dot-depth one. We extend Knast's result to infinite words. In particular, we describe the class of languages definable in alternation-free first-order logic over infinite words, and we give an effective characterization of this fragment. This characterization has two components. The first component is identical to Knast's algebraic property for finite words and the second component is a topological property, namely being a Boolean combination of Cantor sets. As an intermediate step we consider finite and infinite words simultaneously. We then obtain the results for infinite words as well as for finite words as special cases. In particular, we give a new proof of Knast's Theorem on languages of dot-depth one over finite words.Comment: Presented at LICS 201

    The Covering Problem

    Full text link
    An important endeavor in computer science is to understand the expressive power of logical formalisms over discrete structures, such as words. Naturally, "understanding" is not a mathematical notion. This investigation requires therefore a concrete objective to capture this understanding. In the literature, the standard choice for this objective is the membership problem, whose aim is to find a procedure deciding whether an input regular language can be defined in the logic under investigation. This approach was cemented as the right one by the seminal work of Sch\"utzenberger, McNaughton and Papert on first-order logic and has been in use since then. However, membership questions are hard: for several important fragments, researchers have failed in this endeavor despite decades of investigation. In view of recent results on one of the most famous open questions, namely the quantifier alternation hierarchy of first-order logic, an explanation may be that membership is too restrictive as a setting. These new results were indeed obtained by considering more general problems than membership, taking advantage of the increased flexibility of the enriched mathematical setting. This opens a promising research avenue and efforts have been devoted at identifying and solving such problems for natural fragments. Until now however, these problems have been ad hoc, most fragments relying on a specific one. A unique new problem replacing membership as the right one is still missing. The main contribution of this paper is a suitable candidate to play this role: the Covering Problem. We motivate this problem with 3 arguments. First, it admits an elementary set theoretic formulation, similar to membership. Second, we are able to reexplain or generalize all known results with this problem. Third, we develop a mathematical framework and a methodology tailored to the investigation of this problem

    The FO^2 alternation hierarchy is decidable

    Get PDF
    We consider the two-variable fragment FO^2[<] of first-order logic over finite words. Numerous characterizations of this class are known. Th\'erien and Wilke have shown that it is decidable whether a given regular language is definable in FO^2[<]. From a practical point of view, as shown by Weis, FO^2[<] is interesting since its satisfiability problem is in NP. Restricting the number of quantifier alternations yields an infinite hierarchy inside the class of FO^2[<]-definable languages. We show that each level of this hierarchy is decidable. For this purpose, we relate each level of the hierarchy with a decidable variety of finite monoids. Our result implies that there are many different ways of climbing up the FO^2[<]-quantifier alternation hierarchy: deterministic and co-deterministic products, Mal'cev products with definite and reverse definite semigroups, iterated block products with J-trivial monoids, and some inductively defined omega-term identities. A combinatorial tool in the process of ascension is that of condensed rankers, a refinement of the rankers of Weis and Immerman and the turtle programs of Schwentick, Th\'erien, and Vollmer
    • …
    corecore