10,094 research outputs found

    The Metaverse: Survey, Trends, Novel Pipeline Ecosystem & Future Directions

    Full text link
    The Metaverse offers a second world beyond reality, where boundaries are non-existent, and possibilities are endless through engagement and immersive experiences using the virtual reality (VR) technology. Many disciplines can benefit from the advancement of the Metaverse when accurately developed, including the fields of technology, gaming, education, art, and culture. Nevertheless, developing the Metaverse environment to its full potential is an ambiguous task that needs proper guidance and directions. Existing surveys on the Metaverse focus only on a specific aspect and discipline of the Metaverse and lack a holistic view of the entire process. To this end, a more holistic, multi-disciplinary, in-depth, and academic and industry-oriented review is required to provide a thorough study of the Metaverse development pipeline. To address these issues, we present in this survey a novel multi-layered pipeline ecosystem composed of (1) the Metaverse computing, networking, communications and hardware infrastructure, (2) environment digitization, and (3) user interactions. For every layer, we discuss the components that detail the steps of its development. Also, for each of these components, we examine the impact of a set of enabling technologies and empowering domains (e.g., Artificial Intelligence, Security & Privacy, Blockchain, Business, Ethics, and Social) on its advancement. In addition, we explain the importance of these technologies to support decentralization, interoperability, user experiences, interactions, and monetization. Our presented study highlights the existing challenges for each component, followed by research directions and potential solutions. To the best of our knowledge, this survey is the most comprehensive and allows users, scholars, and entrepreneurs to get an in-depth understanding of the Metaverse ecosystem to find their opportunities and potentials for contribution

    Anuário científico da Escola Superior de Tecnologia da Saúde de Lisboa - 2021

    Get PDF
    É com grande prazer que apresentamos a mais recente edição (a 11.ª) do Anuário Científico da Escola Superior de Tecnologia da Saúde de Lisboa. Como instituição de ensino superior, temos o compromisso de promover e incentivar a pesquisa científica em todas as áreas do conhecimento que contemplam a nossa missão. Esta publicação tem como objetivo divulgar toda a produção científica desenvolvida pelos Professores, Investigadores, Estudantes e Pessoal não Docente da ESTeSL durante 2021. Este Anuário é, assim, o reflexo do trabalho árduo e dedicado da nossa comunidade, que se empenhou na produção de conteúdo científico de elevada qualidade e partilhada com a Sociedade na forma de livros, capítulos de livros, artigos publicados em revistas nacionais e internacionais, resumos de comunicações orais e pósteres, bem como resultado dos trabalhos de 1º e 2º ciclo. Com isto, o conteúdo desta publicação abrange uma ampla variedade de tópicos, desde temas mais fundamentais até estudos de aplicação prática em contextos específicos de Saúde, refletindo desta forma a pluralidade e diversidade de áreas que definem, e tornam única, a ESTeSL. Acreditamos que a investigação e pesquisa científica é um eixo fundamental para o desenvolvimento da sociedade e é por isso que incentivamos os nossos estudantes a envolverem-se em atividades de pesquisa e prática baseada na evidência desde o início dos seus estudos na ESTeSL. Esta publicação é um exemplo do sucesso desses esforços, sendo a maior de sempre, o que faz com que estejamos muito orgulhosos em partilhar os resultados e descobertas dos nossos investigadores com a comunidade científica e o público em geral. Esperamos que este Anuário inspire e motive outros estudantes, profissionais de saúde, professores e outros colaboradores a continuarem a explorar novas ideias e contribuir para o avanço da ciência e da tecnologia no corpo de conhecimento próprio das áreas que compõe a ESTeSL. Agradecemos a todos os envolvidos na produção deste anuário e desejamos uma leitura inspiradora e agradável.info:eu-repo/semantics/publishedVersio

    Neuroanatomical and gene expression features of the rabbit accessory olfactory system. Implications of pheromone communication in reproductive behaviour and animal physiology

    Get PDF
    Mainly driven by the vomeronasal system (VNS), pheromone communication is involved in many species-specific fundamental innate socio-sexual behaviors such as mating and fighting, which are essential for animal reproduction and survival. Rabbits are a unique model for studying chemocommunication due to the discovery of the rabbit mammary pheromone, but paradoxically there has been a lack of knowledge regarding its VNS pathway. In this work, we aim at filling this gap by approaching the system from an integrative point of view, providing extensive anatomical and genomic data of the rabbit VNS, as well as pheromone-mediated reproductive and behavioural studies. Our results build strong foundation for further translational studies which aim at implementing the use of pheromones to improve animal production and welfare

    Annals [...].

    Get PDF
    Pedometrics: innovation in tropics; Legacy data: how turn it useful?; Advances in soil sensing; Pedometric guidelines to systematic soil surveys.Evento online. Coordenado por: Waldir de Carvalho Junior, Helena Saraiva Koenow Pinheiro, Ricardo Simão Diniz Dalmolin

    Early Neanderthal social and behavioural complexity during the Purfleet Interglacial: handaxes in the latest Lower Palaeolithic.

    Get PDF
    Only a handful of ‘flagship’ sites from the Purfleet Interglacial (Marine Isotope Stage 9, c. 350-290,000 years ago) have been properly examined, but the archaeological succession at the proposed type-site at Purfleet suggests a period of complexity and transition, with three techno-cultural groups represented in Britain. The first was a simple toolkit lacking handaxes (the Clactonian), and the last a more sophisticated technology presaging the coming Middle Palaeolithic (simple prepared core or proto-Levallois technology). Sandwiched between were Acheulean groups, whose handaxes comprise the great majority of the extant archaeological record of the period – these are the focus of this study. It has previously been suggested that some features of the Acheulean in the Purfleet Interglacial were chronologically restricted, particularly the co-occurrence of ficrons and cleavers. These distinctive forms may have exceeded pure functionality and were perhaps imbued with a deeper social and cultural meaning. This study supports both the previously suggested preference for narrow, pointed morphologies, and the chronologically restricted pairing of ficrons and cleavers. By drawing on a wide spatial and temporal range of sites these patterns could be identified beyond the handful of ‘flagship’ sites previously studied. Hypertrophic ‘giants’ have now also been identified as a chronologically restricted form. Greater metrical variability was found than had been anticipated, leading to the creation of two new sub-groups (IA and IB) which are tentatively suggested to represent spatial and perhaps temporal patterning. The picture in the far west of Britain remains unclear, but the possibility of different Acheulean groups operating in the Solent area, and a late survival of the Acheulean, are both suggested. Handaxes with backing and macroscopic asymmetry may represent prehensile or ergonomic considerations not commonly found on handaxes from earlier interglacial periods. It is argued that these forms anticipate similar developments in the Late Middle Palaeolithic in an example of convergent evolution

    Physical phenomena controlling quiescent flame spread in porous wildland fuel beds

    Get PDF
    Despite well-developed solid surface flame spread theories, we still lack a coherent theory to describe flame spread through porous wildland fuel beds. This porosity results in additional complexity, reducing the thermal conductivity of the fuel bed, but allowing in-bed radiative and convective heat transfer to occur. While previous studies have explored the effect of fuel bed structure on the overall fire behaviour, there remains a need for further investigation of the effect of fuel structure on the underlying physical phenomena controlling flame spread. Through an extensive series of laboratory-based experiments, this thesis provides detailed, physics-based insights for quiescent flame spread through natural porous beds, across a range of structural conditions. Measurements are presented for fuel beds representative of natural field conditions within an area of the fire-prone New Jersey Pinelands National Reserve, which compliment a related series of field experiments conducted as part of a wider research project. Additional systematic investigation across a wider range of fuel conditions identified independent effects of fuel loading and bulk density on the spread rate, flame height and heat release rate. However, neither fuel loading nor bulk density alone provided adequate prediction of the resulting fire behaviour. Drawing on existing structural descriptors (for both natural and engineered fuel beds) an alternative parameter ασδ was proposed. This parameter (incorporating the fuel bed porosity (α), fuel element surface-to-volume ratio (σ), and the fuel bed height (δ)) was strongly correlated with the spread rate. One effect of the fuel bed structure is to influence the heat transfer mechanisms both above and within the porous fuel bed. Existing descriptions of radiation transport through porous fuel beds are often predicated on the assumption of an isotropic fuel bed. However, given their preferential angle of inclination, the pine needle beds in this study may not exhibit isotropic behaviour. Regardless, for the structural conditions investigated, horizontal heat transfer through the fuel bed was identified as the dominant heating mechanism within this quiescent flame spread scenario. However, the significance of heat transfer contributions from the above-bed flame generally increased with increasing ασδ value of the fuel bed. Using direct measurements of the heat flux magnitude and effective heating distance, close agreement was observed between experimentally observed spread rates and a simple thermal model considering only radiative heat transfer through the fuel bed, particularly at lower values of ασδ. Over-predictions occurred at higher ασδ values, or where other heat transfer terms were incorporated, which may highlight the need to include additional heat loss terms. A significant effect of fuel structure on the primary flow regimes, both within and above these porous fuel beds, was also observed, with important implications for the heat transfer and oxygen supply within the fuel bed. Independent effects of fuel loading and bulk density on both the buoyant and buoyancy-driven entrainment flow were observed, with a complex feedback cycle occurring between Heat Release Rate (HRR) and combustion behaviour. Generally, increases in fuel loading resulted in increased HRR, and therefore increased buoyant flow velocity, along with an increase in the velocity of flow entrained towards the combustion region. The complex effects of fuel structure in both the flaming and smouldering combustion phases may necessitate modifications to other common modelling approaches. The widely used Rothermel model under-predicted spread rate for higher bulk density and lower ασδ fuel beds. As previously suggested, an over-sensitivity to fuel bed height was observed, with experimental comparison indicating an under-prediction of reaction intensity at lower fuel heights. These findings have important implications particularly given the continuing widespread use of the Rothermel model, which continues to underpin elements of the BehavePlus fire modelling system and the US National Fire Danger Rating System. The physical insights, and modelling approaches, developed for this low-intensity, quiescent flame spread scenario, are applicable to common prescribed fire activities. It is hoped that this work (alongside complimentary laboratory and field experiments conducted by various authors as part of a wider multi-agency project (SERDP-RC2641)) will contribute to the emerging field of prescribed fire science, and help to address the pressing need for further development of fire prediction and modelling tools

    Synthesis and Characterisation of Low-cost Biopolymeric/mineral Composite Systems and Evaluation of their Potential Application for Heavy Metal Removal

    Get PDF
    Heavy metal pollution and waste management are two major environmental problems faced in the world today. Anthropogenic sources of heavy metals, especially effluent from industries, are serious environmental and health concerns by polluting surface and ground waters. Similarly, on a global scale, thousands of tonnes of industrial and agricultural waste are discarded into the environment annually. There are several conventional methods to treat industrial effluents, including reverse osmosis, oxidation, filtration, flotation, chemical precipitation, ion exchange resins and adsorption. Among them, adsorption and ion exchange are known to be effective mechanisms for removing heavy metal pollution, especially if low-cost materials can be used. This thesis was a study into materials that can be used to remove heavy metals from water using low-cost feedstock materials. The synthesis of low-cost composite matrices from agricultural and industrial by-products and low-cost organic and mineral sources was carried out. The feedstock materials being considered include chitosan (generated from industrial seafood waste), coir fibre (an agricultural by-product), spent coffee grounds (a by-product from coffee machines), hydroxyapatite (from bovine bone), and naturally sourced aluminosilicate minerals such as zeolite. The novel composite adsorbents were prepared using commercially sourced HAp and bovine sourced HAp, with two types of adsorbents being synthesized, including two- and three-component composites. Standard synthetic methods such as precipitation were developed to synthesize these materials, followed by characterization of their structural, physical, and chemical properties (by using FTIR, TGA, SEM, EDX and XRD). The synthesized materials were then evaluated for their ability to remove metal ions from solutions of heavy metals using single-metal ion type and two-metal ion type solution systems, using the model ion solutions, with quantification of their removal efficiency. It was followed by experimentation using the synthesized adsorbents for metal ion removal in complex systems such as an industrial input stream solution system obtained from a local timber treatment company. Two-component composites were considered as control composites to compare the removal efficiency of the three-component composites against. The heavy metal removal experiments were conducted under a range of experimental conditions (e.g., pH, sorbent dose, initial metal ion concentration, time of contact). Of the four metal ion systems considered in this study (Cd2+, Pb2+, Cu2+ and Cr as chromate ions), Pb2+ ion removal by the composites was found to be the highest in single-metal and two-metal ion type solution systems, while chromate ion removal was found to be the lowest. The bovine bone-based hydroxyapatite (bHAp) composites were more efficient at removing the metal cations than composites formed from a commercially sourced hydroxyapatite (cHAp). In industrial input stream solution systems (containing Cu, Cr and As), the Cu2+ ion removal was the highest, which aligned with the observations recorded in the single and two-metal ion type solution systems. Arsenate ion was removed to a higher extent than chromate ion using the three-component composites, while the removal of chromate ion was found to be higher than arsenate ion when using the two-component composites (i.e., the control system). The project also aimed to elucidate the removal mechanisms of these synthesized composite materials by using appropriate adsorption and kinetic models. The adsorption of metal ions exhibited a range of adsorption behaviours as both the models (Langmuir and Freundlich) were found to fit most of the data recorded in different adsorption systems studied. The pseudo-second-order model was found to be the best fitted to describe the kinetics of heavy metal ion adsorption in all the composite adsorbent systems studied, in single-metal ion type and two-metal ion type solution systems. The ion-exchange mechanism was considered as one of the dominant mechanisms for the removal of cations (in single-metal and two-metal ion type solution systems) and arsenate ions (in industrial input stream solution systems) along with other adsorption mechanisms. In contrast, electrostatic attractions were considered to be the dominant mechanism of removal for chromate ions

    Response of saline reservoir to different phaseCO₂-brine: experimental tests and image-based modelling

    Get PDF
    Geological CO₂ storage in saline rocks is a promising method for meeting the target of net zero emission and minimizing the anthropogenic CO₂ emitted into the earth’s atmosphere. Storage of CO₂ in saline rocks triggers CO₂-brine-rock interaction that alters the properties of the rock. Properties of rocks are very crucial for the integrity and efficiency of the storage process. Changes in properties of the reservoir rocks due to CO₂-brine-rock interaction must be well predicted, as some changes can reduce the storage integrity of the reservoir. Considering the thermodynamics, phase behavior, solubility of CO₂ in brine, and the variable pressure-temperature conditions of the reservoir, there will be undissolved CO₂ in a CO₂ storage reservoir alongside the brine for a long time, and there is a potential for phase evolution of the undissolved CO₂. The phase of CO₂ influence the CO₂-brine-rock interaction, different phaseCO₂-brine have a unique effect on the properties of the reservoir rocks, Therefore, this study evaluates the effect of four different phaseCO₂-brine reservoir states on the properties of reservoir rocks using experimental and image-based approach. Samples were saturated with the different phaseCO₂-brine, then subjected to reservoir conditions in a triaxial compression test. The representative element volume (REV)/representative element area (REA) for the rock samples was determined from processed digital images, and rock properties were evaluated using digital rock physics and rock image analysis techniques. This research has evaluated the effect of different phaseCO₂-brine on deformation rate and deformation behavior, bulk modulus, compressibility, strength, and stiffness as well as porosity and permeability of sample reservoir rocks. Changes in pore geometry properties, porosity, and permeability of the rocks in CO₂ storage conditions with different phaseCO₂-brine have been evaluated using digital rock physics techniques. Microscopic rock image analysis has been applied to provide evidence of changes in micro-fabric, the topology of minerals, and elemental composition of minerals in saline rocks resulting from different phaseCO₂-br that can exist in a saline CO₂ storage reservoir. It was seen that the properties of the reservoir that are most affected by the scCO₂-br state of the reservoir include secondary fatigue rate, bulk modulus, shear strength, change in the topology of minerals after saturation as well as change in shape and flatness of pore surfaces. The properties of the reservoir that is most affected by the gCO₂-br state of the reservoir include primary fatigue rate, change in permeability due to stress, change in porosity due to stress, and change topology of minerals due to stress. For all samples, the roundness and smoothness of grains as well as smoothness of pores increased after compression while the roundness of pores decreased. Change in elemental composition in rock minerals in CO₂-brine-rock interaction was seen to depend on the reactivity of the mineral with CO₂ and/or brine and the presence of brine accelerates such change. Carbon, oxygen, and silicon can be used as index minerals for elemental changes in a CO₂-brine-rock system. The result of this work can be applied to predicting the effect the different possible phases of CO₂ will have on the deformation, geomechanics indices, and storage integrity of giant CO₂ storage fields such as Sleipner, In Salah, etc

    Elasto-plastic deformations within a material point framework on modern GPU architectures

    Get PDF
    Plastic strain localization is an important process on Earth. It strongly influ- ences the mechanical behaviour of natural processes, such as fault mechanics, earthquakes or orogeny. At a smaller scale, a landslide is a fantastic example of elasto-plastic deformations. Such behaviour spans from pre-failure mech- anisms to post-failure propagation of the unstable material. To fully resolve the landslide mechanics, the selected numerical methods should be able to efficiently address a wide range of deformation magnitudes. Accurate and performant numerical modelling requires important compu- tational resources. Mesh-free numerical methods such as the material point method (MPM) or the smoothed-particle hydrodynamics (SPH) are particu- larly computationally expensive, when compared with mesh-based methods, such as the finite element method (FEM) or the finite difference method (FDM). Still, mesh-free methods are particularly well-suited to numerical problems involving large elasto-plastic deformations. But, the computational efficiency of these methods should be first improved in order to tackle complex three-dimensional problems, i.e., landslides. As such, this research work attempts to alleviate the computational cost of the material point method by using the most recent graphics processing unit (GPU) architectures available. GPUs are many-core processors originally designed to refresh screen pixels (e.g., for computer games) independently. This allows GPUs to delivers a massive parallelism when compared to central processing units (CPUs). To do so, this research work first investigates code prototyping in a high- level language, e.g., MATLAB. This allows to implement vectorized algorithms and benchmark numerical results of two-dimensional analysis with analytical solutions and/or experimental results in an affordable amount of time. After- wards, low-level language such as CUDA C is used to efficiently implement a GPU-based solver, i.e., ep2-3De v1.0, can resolve three-dimensional prob- lems in a decent amount of time. This part takes advantages of the massive parallelism of modern GPU architectures. In addition, a first attempt of GPU parallel computing, i.e., multi-GPU codes, is performed to increase even more the performance and to address the on-chip memory limitation. Finally, this GPU-based solver is used to investigate three-dimensional granular collapses and is compared with experimental evidences obtained in the laboratory. This research work demonstrates that the material point method is well suited to resolve small to large elasto-plastic deformations. Moreover, the computational efficiency of the method can be dramatically increased using modern GPU architectures. These allow fast, performant and accurate three- dimensional modelling of landslides, provided that the on-chip memory limi- tation is alleviated with an appropriate parallel strategy

    Non-Rigid Liver Registration for Laparoscopy using Data-Driven Biomechanical Models

    Get PDF
    During laparoscopic liver resection, the limited access to the organ, the small field of view and lack of palpation can obstruct a surgeon’s workflow. Automatic navigation systems could use the images from preoperative volumetric organ scans to help the surgeons find their target (tumors) and risk-structures (vessels) more efficiently. This requires the preoperative data to be fused (or registered) with the intraoperative scene in order to display information at the correct intraoperative position. One key challenge in this setting is the automatic estimation of the organ’s current intra-operative deformation, which is required in order to predict the position of internal structures. Parameterizing the many patient-specific unknowns (tissue properties, boundary conditions, interactions with other tissues, direction of gravity) is very difficult. Instead, this work explores how to employ deep neural networks to solve the registration problem in a data-driven manner. To this end, convolutional neural networks are trained on synthetic data to estimate an organ’s intraoperative displacement field and thus its current deformation. To drive this estimation, visible surface cues from the intraoperative camera view must be supplied to the networks. Since reliable surface features are very difficult to find, the networks are adapted to also find correspondences between the pre- and intraoperative liver geometry automatically. This combines the search for correspondences with the biomechanical behavior estimation and allows the networks to tackle the full non-rigid registration problem in one single step. The result is a model which can quickly predict the volume deformation of a liver, given only sparse surface information. The model combines the advantages of a physically accurate biomechanical simulation with the speed and powerful feature extraction capabilities of deep neural networks. To test the method intraoperatively, a registration pipeline is developed which constructs a map of the liver and its surroundings from the laparoscopic video and then uses the neural networks to fuse the preoperative volume data into this map. The deformed organ volume can then be rendered as an overlay directly onto the laparoscopic video stream. The focus of this pipeline is to be applicable to real surgery, where everything should be quick and non-intrusive. To meet these requirements, a SLAM system is used to localize the laparoscopic camera (avoiding setup of an external tracking system), various neural networks are used to quickly interpret the scene and semi-automatic tools let the surgeons guide the system. Beyond the concrete advantages of the data-driven approach for intraoperative registration, this work also demonstrates general benefits of training a registration system preoperatively on synthetic data. The method lets the engineer decide which values need to be known explicitly and which should be estimated implicitly by the networks, which opens the door to many new possibilities.:1 Introduction 1.1 Motivation 1.1.1 Navigated Liver Surgery 1.1.2 Laparoscopic Liver Registration 1.2 Challenges in Laparoscopic Liver Registration 1.2.1 Preoperative Model 1.2.2 Intraoperative Data 1.2.3 Fusion/Registration 1.2.4 Data 1.3 Scope and Goals of this Work 1.3.1 Data-Driven, Biomechanical Model 1.3.2 Data-Driven Non-Rigid Registration 1.3.3 Building a Working Prototype 2 State of the Art 2.1 Rigid Registration 2.2 Non-Rigid Liver Registration 2.3 Neural Networks for Simulation and Registration 3 Theoretical Background 3.1 Liver 3.2 Laparoscopic Liver Resection 3.2.1 Staging Procedure 3.3 Biomechanical Simulation 3.3.1 Physical Balance Principles 3.3.2 Material Models 3.3.3 Numerical Solver: The Finite Element Method (FEM) 3.3.4 The Lagrangian Specification 3.4 Variables and Data in Liver Registration 3.4.1 Observable 3.4.2 Unknowns 4 Generating Simulations of Deforming Organs 4.1 Organ Volume 4.2 Forces and Boundary Conditions 4.2.1 Surface Forces 4.2.2 Zero-Displacement Boundary Conditions 4.2.3 Surrounding Tissues and Ligaments 4.2.4 Gravity 4.2.5 Pressure 4.3 Simulation 4.3.1 Static Simulation 4.3.2 Dynamic Simulation 4.4 Surface Extraction 4.4.1 Partial Surface Extraction 4.4.2 Surface Noise 4.4.3 Partial Surface Displacement 4.5 Voxelization 4.5.1 Voxelizing the Liver Geometry 4.5.2 Voxelizing the Displacement Field 4.5.3 Voxelizing Boundary Conditions 4.6 Pruning Dataset - Removing Unwanted Results 4.7 Data Augmentation 5 Deep Neural Networks for Biomechanical Simulation 5.1 Training Data 5.2 Network Architecture 5.3 Loss Functions and Training 6 Deep Neural Networks for Non-Rigid Registration 6.1 Training Data 6.2 Architecture 6.3 Loss 6.4 Training 6.5 Mesh Deformation 6.6 Example Application 7 Intraoperative Prototype 7.1 Image Acquisition 7.2 Stereo Calibration 7.3 Image Rectification, Disparity- and Depth- estimation 7.4 Liver Segmentation 7.4.1 Synthetic Image Generation 7.4.2 Automatic Segmentation 7.4.3 Manual Segmentation Modifier 7.5 SLAM 7.6 Dense Reconstruction 7.7 Rigid Registration 7.8 Non-Rigid Registration 7.9 Rendering 7.10 Robotic Operating System 8 Evaluation 8.1 Evaluation Datasets 8.1.1 In-Silico 8.1.2 Phantom Torso and Liver 8.1.3 In-Vivo, Human, Breathing Motion 8.1.4 In-Vivo, Human, Laparoscopy 8.2 Metrics 8.2.1 Mean Displacement Error 8.2.2 Target Registration Error (TRE) 8.2.3 Champfer Distance 8.2.4 Volumetric Change 8.3 Evaluation of the Synthetic Training Data 8.4 Data-Driven Biomechanical Model (DDBM) 8.4.1 Amount of Intraoperative Surface 8.4.2 Dynamic Simulation 8.5 Volume to Surface Registration Network (V2S-Net) 8.5.1 Amount of Intraoperative Surface 8.5.2 Dependency on Initial Rigid Alignment 8.5.3 Registration Accuracy in Comparison to Surface Noise 8.5.4 Registration Accuracy in Comparison to Material Stiffness 8.5.5 Champfer-Distance vs. Mean Displacement Error 8.5.6 In-vivo, Human Breathing Motion 8.6 Full Intraoperative Pipeline 8.6.1 Intraoperative Reconstruction: SLAM and Intraoperative Map 8.6.2 Full Pipeline on Laparoscopic Human Data 8.7 Timing 9 Discussion 9.1 Intraoperative Model 9.2 Physical Accuracy 9.3 Limitations in Training Data 9.4 Limitations Caused by Difference in Pre- and Intraoperative Modalities 9.5 Ambiguity 9.6 Intraoperative Prototype 10 Conclusion 11 List of Publications List of Figures Bibliograph
    corecore