3 research outputs found

    High-Efficient Video Transmission for HDTV Broadcasting

    Get PDF
    Before broadcasting a video signal, redundant data should be removed from the transmitted video signal. This redundancy operation can be performed using many video coding standards such as H.264/Advanced Video Coding (AVC) and H.265/High-Efficient Video Coding (HEVC) standards. Although both standards produce a great video resolution, too much data are considered to be still redundant. The most exhaustive process in video encoding process is the Motion Estimation (ME) process. The more the resolution of the transmitted video signal, the more the video data to be fetched from the main memory. This will increase the required memory access time for performing the Motion Estimation process. In This chapter, a smart ME coprocessor architecture, which greatly reduces the memory access time, is presented. Data reuse algorithm is used to minimize the memory access time. The discussed coprocessor effectively reuses the data of the search area to minimize the overall memory access time (I/O memory bandwidth) while fully using all resources and hardware. This would speed up the video broadcasting process. For a search range of 32 × 32 and block size of 16 × 16, the architecture can perform Motion Estimation for 30 fps of HDTV video and easily outperforms many fast full-search architectures

    Efficient H.264 intra Frame CODEC with Best prediction matrix mode algorithm

    Get PDF
    The continuous growth of smart communities and everincreasingdemand of sending or storing videos, have led toconsumption of huge amount of data. The video compressiontechniques are solving this emerging challenge. However, H.264standard can be considered most notable, and it has proven to meetproblematic requirements. The authors present (BPMM) as a novelefficient Intra prediction scheme. We can say that the creation of ourproposed technique was in a phased manner; it\u27s emerged as aproposal and achieved impressive results in the performanceparameters as compression ratios, bit rates, and PSNR. Then in thesecond stage, we solved the challenges of overcoming the obstacle ofencoding bits overhead. In this research, we try to address the finalphase of the (BPMM) codec and to introduce our approach in a globalmanner through realization of decoding mechanism. For evaluation ofour scheme, we utilized VHDL as a platform. Final results haveproven our success to pass bottleneck of this phase, since the decodedvideos have the same PSNR that our encoder tells us, whilepreserving steady compression ratio treating the overhead. We aspireour BPMM algorithm will be adopted as reference design of H.264 inthe ITU

    Efficient H.264 intra Frame CODEC with Best prediction matrix mode algorithm

    Get PDF
    The continuous growth of smart communities and everincreasingdemand of sending or storing videos, have led toconsumption of huge amount of data. The video compressiontechniques are solving this emerging challenge. However, H.264standard can be considered most notable, and it has proven to meetproblematic requirements. The authors present (BPMM) as a novelefficient Intra prediction scheme. We can say that the creation of ourproposed technique was in a phased manner; it's emerged as aproposal and achieved impressive results in the performanceparameters as compression ratios, bit rates, and PSNR. Then in thesecond stage, we solved the challenges of overcoming the obstacle ofencoding bits overhead. In this research, we try to address the finalphase of the (BPMM) codec and to introduce our approach in a globalmanner through realization of decoding mechanism. For evaluation ofour scheme, we utilized VHDL as a platform. Final results haveproven our success to pass bottleneck of this phase, since the decodedvideos have the same PSNR that our encoder tells us, whilepreserving steady compression ratio treating the overhead. We aspireour BPMM algorithm will be adopted as reference design of H.264 inthe ITU
    corecore