4 research outputs found

    A City-Scale ITS-G5 Network for Next-Generation Intelligent Transportation Systems: Design Insights and Challenges

    Get PDF
    As we move towards autonomous vehicles, a reliable Vehicle-to-Everything (V2X) communication framework becomes of paramount importance. In this paper we present the development and the performance evaluation of a real-world vehicular networking testbed. Our testbed, deployed in the heart of the City of Bristol, UK, is able to exchange sensor data in a V2X manner. We will describe the testbed architecture and its operational modes. Then, we will provide some insight pertaining the firmware operating on the network devices. The system performance has been evaluated under a series of large-scale field trials, which have proven how our solution represents a low-cost high-quality framework for V2X communications. Our system managed to achieve high packet delivery ratios under different scenarios (urban, rural, highway) and for different locations around the city. We have also identified the instability of the packet transmission rate while using single-core devices, and we present some future directions that will address that.Comment: Accepted for publication to AdHoc-Now 201

    Efficient V2V Communication Scheme for 5G MmWave Hyper-Connected CAVs

    No full text
    Connected and Autonomous Vehicles (CAVs) require continuous access to sensory data to perform complex high-speed maneuvers and advanced trajectory planning. High priority CAVs are particularly reliant on extended perception horizon facilitated by sensory data exchange between CAVs. Existing technologies such as the Dedicated Short Range Communications (DSRC) are ill-equipped to provide advanced cooperative perception service. This creates the need for more sophisticated technologies such as the 5G Millimetre-Waves (mmWaves). In this work, we propose a distributed Vehicle-to-Vehicle (V2V) mmWaves association scheme operating in a heterogeneous manner. Our system utilises the information exchanged within the DSRC frequency band to bootstrap the best CAV pairs formation. Using a Stable Fixtures Matching Game, we form V2V multipoint-to-multipoint links. Compared to more traditional point-to-point links, our system provides almost twice as much sensory data exchange capacity for high priority CAVs while doubling the mmWaves channel utilisation for all the vehicles in the network.Comment: To be presented at the IEEE ICC 2018 Workshop - 5G and Cooperative Autonomous Drivin
    corecore