2,504 research outputs found

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    On the Minimization of Handover Decision Instability in Wireless Local Area Networks

    Full text link
    This paper addresses handover decision instability which impacts negatively on both user perception and network performances. To this aim, a new technique called The HandOver Decision STAbility Technique (HODSTAT) is proposed for horizontal handover in Wireless Local Area Networks (WLAN) based on IEEE 802.11standard. HODSTAT is based on a hysteresis margin analysis that, combined with a utilitybased function, evaluates the need for the handover and determines if the handover is needed or avoided. Indeed, if a Mobile Terminal (MT) only transiently hands over to a better network, the gain from using this new network may be diminished by the handover overhead and short usage duration. The approach that we adopt throughout this article aims at reducing the minimum handover occurrence that leads to the interruption of network connectivity (this is due to the nature of handover in WLAN which is a break before make which causes additional delay and packet loss). To this end, MT rather performs a handover only if the connectivity of the current network is threatened or if the performance of a neighboring network is really better comparing the current one with a hysteresis margin. This hysteresis should make a tradeoff between handover occurrence and the necessity to change the current network of attachment. Our extensive simulation results show that our proposed algorithm outperforms other decision stability approaches for handover decision algorithm.Comment: 13 Pages, IJWM

    Intelligent hybrid cheapest cost and mobility optimization RAT selection approaches for heterogeneous wireless networks

    Full text link
    The evolution of wireless networks has led to the deployment of different Radio Access Technologies (RATs) such as UMTS Terrestrial Radio Access Network (UTRAN), Long Term Evolution (LTE), Wireless Local Area Network (WLAN) and Mobile Worldwide Interoperability for Microwave Access (WiMAX) which are integrated through a common platform. Common Radio Resource Management (CRRM) was proposed to manage radio resource utilization in heterogeneous wireless networks and to provide the required Quality of Service (QoS) for allocated calls. RAT selection algorithms are an integral part of the CRRM algorithms. Their role is to decide, when a new or Vertical Handover (VHO) call is requested, which of the available RATs is most suitable to fit the need of the incoming call and when to admit them. This paper extends our earlier work on the proposed intelligent mobility optimization and proposes an intelligent hybrid cheapest cost RAT selection approach which aims to increase users' satisfaction by allocation users that are looking for cheapest cost connections to a RAT that offers the cheapest cost of service. A comparison for the performance of centralized load-balancing, proposed and distributed cheapest cost and mobility optimization algorithms is presented. Simulation results show that the proposed intelligent algorithms perform better than the centralized load-balancing and the distributed algorithms. © 2014 Academy Publisher

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process
    • …
    corecore