670 research outputs found

    Development of a dc-ac power conditioner for wind generator by using neural network

    Get PDF
    This project present of development single phase DC-AC converter for wind generator application. The mathematical model of the wind generator and Artificial Neural Network control for DC-AC converter is derived. The controller is designed to stabilize the output voltage of DC-AC converter. To verify the effectiveness of the proposal controller, both simulation and experimental are developed. The simulation and experimental result show that the amplitude of output voltage of the DC-AC converter can be controlled

    Performance comparison of differential space-time signalling schemes for OFDM systems

    Get PDF
    Differential transmit diversity is an attractive alternative to its coherent counterpart, especially for multiple antenna systems where channel estimation is more difficult to attain compared to that of single antenna systems. In this paper we compare two different types of differential transmit diversity techniques for OFDM based transmissions. The first technique uses differential space-time block codes (DSTBC) from orthogonal designs and the second uses the differential cyclic delay diversity (DCDD). The results compare the bit error performance for several transmit antenna configurations. The results show that DCDD offers a very close performance to that of DSTBC, with the advantage of a simplified receiver structure

    Efficient space-frequency block coded pilot-aided channel estimation method for multiple-input-multiple-output orthogonal frequency division multiplexing systems over mobile frequency-selective fading channels

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.An iterative pilot-aided channel estimation technique for space-frequency block coded (SFBC) multiple-input multiple-output orthogonal frequency division multiplexing systems is proposed. Traditionally, when channel estimation techniques are utilised, the SFBC information signals are decoded one block at a time. In the proposed algorithm, multiple blocks of SFBC information signals are decoded simultaneously. The proposed channel estimation method can thus significantly reduce the amount of time required to decode information signals compared to similar channel estimation methods proposed in the literature. The proposed method is based on the maximum likelihood approach that offers linearity and simplicity of implementation. An expression for the pairwise error probability (PEP) is derived based on the estimated channel. The derived PEP is then used to determine the optimal power allocation for the pilot sequence. The performance of the proposed algorithm is demonstrated in high frequency selective channels, for different number of pilot symbols, using different modulation schemes. The algorithm is also tested under different levels of Doppler shift and for different number of transmit and receive antennas. The results show that the proposed scheme minimises the error margin between slow and high speed receivers compared to similar channel estimation methods in the literature.Peer reviewe

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Joint semi-blind detection and channel estimation in space-frequency trellis coded MIMO-OFDM

    Get PDF

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    High throughput MIMO-OFDM WLAN for urban hotspots

    Get PDF

    SourceSync: A Distributed Wireless Architecture for Exploiting Sender Diversity

    Get PDF
    Diversity is an intrinsic property of wireless networks. Recent years have witnessed the emergence of many distributed protocols like ExOR, MORE, SOAR, SOFT, and MIXIT that exploit receiver diversity in 802.11-like networks. In contrast, the dual of receiver diversity, sender diversity, has remained largely elusive to such networks. This paper presents SourceSync, a distributed architecture for harnessing sender diversity. SourceSync enables concurrent senders to synchronize their transmissions to symbol boundaries, and cooperate to forward packets at higher data rates than they could have achieved by transmitting separately. The paper shows that SourceSync improves the performance of opportunistic routing protocols. Specifically, SourceSync allows all nodes that overhear a packet in a wireless mesh to simultaneously transmit it to their nexthops, in contrast to existing opportunistic routing protocols that are forced to pick a single forwarder from among the overhearing nodes. Such simultaneous transmission reduces bit errors and improves throughput. The paper also shows that SourceSync increases the throughput of 802.11 last hop diversity protocols by allowing multiple APs to transmit simultaneously to a client, thereby harnessing sender diversity. We have implemented SourceSync on the FPGA of an 802.11-like radio platform. We have also evaluated our system in an indoor wireless testbed, empirically showing its benefits.National Science Foundation (U.S.) (Award CNS-0831660)United States. Defense Advanced Research Projects Agency. Information Theory for Mobile Ad-Hoc Networks Progra
    corecore