22,877 research outputs found

    Reduced Complexity Sphere Decoding

    Full text link
    In Multiple-Input Multiple-Output (MIMO) systems, Sphere Decoding (SD) can achieve performance equivalent to full search Maximum Likelihood (ML) decoding, with reduced complexity. Several researchers reported techniques that reduce the complexity of SD further. In this paper, a new technique is introduced which decreases the computational complexity of SD substantially, without sacrificing performance. The reduction is accomplished by deconstructing the decoding metric to decrease the number of computations and exploiting the structure of a lattice representation. Furthermore, an application of SD, employing a proposed smart implementation with very low computational complexity is introduced. This application calculates the soft bit metrics of a bit-interleaved convolutional-coded MIMO system in an efficient manner. Based on the reduced complexity SD, the proposed smart implementation employs the initial radius acquired by Zero-Forcing Decision Feedback Equalization (ZF-DFE) which ensures no empty spheres. Other than that, a technique of a particular data structure is also incorporated to efficiently reduce the number of executions carried out by SD. Simulation results show that these approaches achieve substantial gains in terms of the computational complexity for both uncoded and coded MIMO systems.Comment: accepted to Journal. arXiv admin note: substantial text overlap with arXiv:1009.351

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Generalized feedback detection for spatial multiplexing multi-antenna systems

    Get PDF
    We present a unified detection framework for spatial multiplexing multiple-input multiple-output (MIMO) systems by generalizing Heller’s classical feedback decoding algorithm for convolutional codes. The resulting generalized feedback detector (GFD) is characterized by three parameters: window size, step size and branch factor. Many existing MIMO detectors are turned out to be special cases of the GFD. Moreover, different parameter choices can provide various performance-complexity tradeoffs. The connection between MIMO detectors and tree search algorithms is also established. To reduce redundant computations in the GFD, a shared computation technique is proposed by using a tree data structure. Using a union bound based analysis of the symbol error rates, the diversity order and signal-to-noise ratio (SNR) gain are derived analytically as functions of the three parameters; for example, the diversity order of the GFD varies between 1 and N. The complexity of the GFD varies between those of the maximum-likelihood (ML) detector and the zero-forcing decision feedback detector (ZFDFD). Extensive computer simulation results are also provided

    Successive interference cancellation aided sphere decoder for multi-input multi-output systems

    Get PDF
    In this paper, sphere decoding algorithms are proposed for both hard detection and soft processing in multi-input multi-output (MIMO) systems. Both algorithms are based on the complex tree structure to reduce the complexity of searching the unique minimum Euclidean distance and multiple Euclidean distances, and obtain the corresponding transmit symbol vectors. The novel complex hard sphere decoder for MIMO detection is presented first, and then the soft processing of a novel sphere decoding algorithm for list generation is discussed. The performance and complexity of the proposed techniques are demonstrated via simulations in terms of bit error rate (BER), the number of nodes accessed and floating-point operations (FLOPS)
    • …
    corecore