104,147 research outputs found

    Evaluating Scoped Meaning Representations

    Get PDF
    Semantic parsing offers many opportunities to improve natural language understanding. We present a semantically annotated parallel corpus for English, German, Italian, and Dutch where sentences are aligned with scoped meaning representations in order to capture the semantics of negation, modals, quantification, and presupposition triggers. The semantic formalism is based on Discourse Representation Theory, but concepts are represented by WordNet synsets and thematic roles by VerbNet relations. Translating scoped meaning representations to sets of clauses enables us to compare them for the purpose of semantic parser evaluation and checking translations. This is done by computing precision and recall on matching clauses, in a similar way as is done for Abstract Meaning Representations. We show that our matching tool for evaluating scoped meaning representations is both accurate and efficient. Applying this matching tool to three baseline semantic parsers yields F-scores between 43% and 54%. A pilot study is performed to automatically find changes in meaning by comparing meaning representations of translations. This comparison turns out to be an additional way of (i) finding annotation mistakes and (ii) finding instances where our semantic analysis needs to be improved.Comment: Camera-ready for LREC 201

    A Semantic Framework for Priority-based Service Matching in Pervasive Environments

    No full text
    The increasing popularity of personal wireless devices has raised new demands for the efficient discovery of heterogeneous devices and services in pervasive environments. The existing approaches such as Jini [1], UPnP [8], etc., describe services at a syntactic level and the matching mechanisms in these approaches are limited to syntactic comparisons based on attributes or interfaces. In order to overcome the limitations in these approaches, there has been an increased interest in the use of semantic description and matching techniques to support effective service discovery. This paper proposes a semantic matching approach which facilitates the discovery of device-based services in a pervasive environment; the approach provides a ranking facility that orders services according to their suitability and also considers priorities placed on individual requirements in a request during the matching process. The evaluation studies have shown that the matcher results correlate reasonably well with human judgement

    A Pragmatic Approach for the Semantic Description and Matching of Pervasive Resources

    No full text
    The increasing popularity of personal wireless devices has raised new demands for the efficient discovery of heterogeneous devices and services in pervasive environments. With the advancement of the electronic world, the diversity of available services is increasing rapidly. %This raises new demands for the efficient discovery and location of heterogeneous services and resources in dynamically changing environments. Traditional approaches for service discovery describe services at a syntactic level and the matching mechanisms available for these approaches are limited to syntactic comparisons based on attributes or interfaces. In order to overcome these limitations, there has been an increased interest in the use of semantic description and matching techniques to support effective service discovery. In this paper, we present a semantic matching approach to facilitate the discovery of device-based services in pervasive environments. The approach includes a ranking mechanism that orders services according to their suitability and also considers priorities placed on individual requirements in a request during the matching process. The solution has been systematically evaluated for its retrieval effectiveness and the results have shown that the matcher results agree reasonably well with human judgement. Another important practical concern is the efficiency and the scalability of the semantic matching solution. Therefore, we have evaluated the scalability of the proposed solution by investigating the variation in matching time in response to increasing numbers of advertisements and increasing request sizes, and have presented the empirical results

    SenseCam image localisation using hierarchical SURF trees

    Get PDF
    The SenseCam is a wearable camera that automatically takes photos of the wearer's activities, generating thousands of images per day. Automatically organising these images for efficient search and retrieval is a challenging task, but can be simplified by providing semantic information with each photo, such as the wearer's location during capture time. We propose a method for automatically determining the wearer's location using an annotated image database, described using SURF interest point descriptors. We show that SURF out-performs SIFT in matching SenseCam images and that matching can be done efficiently using hierarchical trees of SURF descriptors. Additionally, by re-ranking the top images using bi-directional SURF matches, location matching performance is improved further

    A semantic feature for human motion retrieval

    Get PDF
    With the explosive growth of motion capture data, it becomes very imperative in animation production to have an efficient search engine to retrieve motions from large motion repository. However, because of the high dimension of data space and complexity of matching methods, most of the existing approaches cannot return the result in real time. This paper proposes a high level semantic feature in a low dimensional space to represent the essential characteristic of different motion classes. On the basis of the statistic training of Gauss Mixture Model, this feature can effectively achieve motion matching on both global clip level and local frame level. Experiment results show that our approach can retrieve similar motions with rankings from large motion database in real-time and also can make motion annotation automatically on the fly. Copyright Ā© 2013 John Wiley & Sons, Ltd

    Deep Structured Features for Semantic Segmentation

    Full text link
    We propose a highly structured neural network architecture for semantic segmentation with an extremely small model size, suitable for low-power embedded and mobile platforms. Specifically, our architecture combines i) a Haar wavelet-based tree-like convolutional neural network (CNN), ii) a random layer realizing a radial basis function kernel approximation, and iii) a linear classifier. While stages i) and ii) are completely pre-specified, only the linear classifier is learned from data. We apply the proposed architecture to outdoor scene and aerial image semantic segmentation and show that the accuracy of our architecture is competitive with conventional pixel classification CNNs. Furthermore, we demonstrate that the proposed architecture is data efficient in the sense of matching the accuracy of pixel classification CNNs when trained on a much smaller data set.Comment: EUSIPCO 2017, 5 pages, 2 figure

    KOIOS: Top-k Semantic Overlap Set Search

    Full text link
    We study the top-k set similarity search problem using semantic overlap. While vanilla overlap requires exact matches between set elements, semantic overlap allows elements that are syntactically different but semantically related to increase the overlap. The semantic overlap is the maximum matching score of a bipartite graph, where an edge weight between two set elements is defined by a user-defined similarity function, e.g., cosine similarity between embeddings. Common techniques like token indexes fail for semantic search since similar elements may be unrelated at the character level. Further, verifying candidates is expensive (cubic versus linear for syntactic overlap), calling for highly selective filters. We propose KOIOS, the first exact and efficient algorithm for semantic overlap search. KOIOS leverages sophisticated filters to minimize the number of required graph-matching calculations. Our experiments show that for medium to large sets less than 5% of the candidate sets need verification, and more than half of those sets are further pruned without requiring the expensive graph matching. We show the efficiency of our algorithm on four real datasets and demonstrate the improved result quality of semantic over vanilla set similarity search
    • ā€¦
    corecore