8 research outputs found

    I2PA, U-prove, and Idemix: An Evaluation of Memory Usage and Computing Time Efficiency in an IoT Context

    Full text link
    The Internet of Things (IoT), in spite of its innumerable advantages, brings many challenges namely issues about users' privacy preservation and constraints about lightweight cryptography. Lightweight cryptography is of capital importance since IoT devices are qualified to be resource-constrained. To address these challenges, several Attribute-Based Credentials (ABC) schemes have been designed including I2PA, U-prove, and Idemix. Even though these schemes have very strong cryptographic bases, their performance in resource-constrained devices is a question that deserves special attention. This paper aims to conduct a performance evaluation of these schemes on issuance and verification protocols regarding memory usage and computing time. Recorded results show that both I2PA and U-prove present very interesting results regarding memory usage and computing time while Idemix presents very low performance with regard to computing time

    I2PA : An Efficient ABC for IoT

    Get PDF
    Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preserving and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient ABC scheme for IoT devices. We use ECC without pairing, blind signing and zero knowledge proof. Our scheme supports block signing, selective disclosure and randomization. It provides data minimization and transactions' unlinkability. Our construction is efficient since smaller key size can be used and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints namely low energy power, small storage capacity and low computing power

    Analysing Trust Issues in Cloud Identity Environments

    Get PDF
    Trust acts as a facilitator for decision making in environments, where decisions are subject to risk and uncertainty. Security is one of the factors contributing to the trust model that is a requirement for service users. In this paper we ask, What can be done to improve end user trust in choosing a cloud identity provider? Security and privacy are central issues in a cloud identity environment and it is the end user who determines the amount of trust they have in any identity system. This paper is an in-depth literature survey that evaluates identity service delivery in a cloud environment from the perspective of the service user

    Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers

    Get PDF
    Attribute-based credentials allow a user to prove properties about herself anonymously. Revoking such credentials, which requires singling them out, is hard because it is at odds with anonymity. All revocation schemes proposed to date either sacrifice anonymity altogether, require the parties to be online, or put high load on the user or the verifier. As a result, these schemes are either too complicated for low-powered devices like smart cards or they do not scale. We propose a new revocation scheme that has a very low computational cost for users and verifiers, and does not require users to process updates. We trade only a limited, but well-defined, amount of anonymity to make the first practical revocation scheme that is efficient at large scales and fast enough for smart cards

    Efficient Selective Disclosure on Smart Cards using Idemix ⋆

    No full text
    Abstract In this paper we discuss an efficient implementation for selective disclosure of attribute-based credentials on smart cards. In this context we concentrate on the implementation of this core feature of IBM’s Identity Mixer (Idemix) technology. Using the MULTOS platform we are the first to provide this feature on a smart card. We compare Idemix with Microsoft’s U-Prove technology, as the latter also offers selective disclosure of attributes and has been implemented on a smart card [10]

    Efficient Selective Disclosure on Smart Cards Using Idemix

    No full text

    Privacy-preserving E-ticketing Systems for Public Transport Based on RFID/NFC Technologies

    Get PDF
    Pervasive digitization of human environment has dramatically changed our everyday lives. New technologies which have become an integral part of our daily routine have deeply affected our perception of the surrounding world and have opened qualitatively new opportunities. In an urban environment, the influence of such changes is especially tangible and acute. For example, ubiquitous computing (also commonly referred to as UbiComp) is a pure vision no more and has transformed the digital world dramatically. Pervasive use of smartphones, integration of processing power into various artefacts as well as the overall miniaturization of computing devices can already be witnessed on a daily basis even by laypersons. In particular, transport being an integral part of any urban ecosystem have been affected by these changes. Consequently, public transport systems have undergone transformation as well and are currently dynamically evolving. In many cities around the world, the concept of the so-called electronic ticketing (e-ticketing) is being extensively used for issuing travel permissions which may eventually result in conventional paper-based tickets being completely phased out already in the nearest future. Opal Card in Sydney, Oyster Card in London, Touch & Travel in Germany and many more are all the examples of how well the e-ticketing has been accepted both by customers and public transport companies. Despite numerous benefits provided by such e-ticketing systems for public transport, serious privacy concern arise. The main reason lies in the fact that using these systems may imply the dramatic multiplication of digital traces left by individuals, also beyond the transport scope. Unfortunately, there has been little effort so far to explicitly tackle this issue. There is still not enough motivation and public pressure imposed on industry to invest into privacy. In academia, the majority of solutions targeted at this problem quite often limit the real-world pertinence of the resultant privacy-preserving concepts due to the fact that inherent advantages of e-ticketing systems for public transport cannot be fully leveraged. This thesis is aimed at solving the aforementioned problem by providing a privacy-preserving framework which can be used for developing e-ticketing systems for public transport with privacy protection integrated from the outset. At the same time, the advantages of e-ticketing such as fine-grained billing, flexible pricing schemes, and transparent use (which are often the main drivers for public to roll out such systems) can be retained
    corecore