115 research outputs found

    Dynamic Channel Access Scheme for Interference Mitigation in Relay-assisted Intra-WBANs

    Full text link
    This work addresses problems related to interference mitigation in a single wireless body area network (WBAN). In this paper, We propose a distributed \textit{C}ombined carrier sense multiple access with collision avoidance (CSMA/CA) with \textit{F}lexible time division multiple access (\textit{T}DMA) scheme for \textit{I}nterference \textit{M}itigation in relay-assisted intra-WBAN, namely, CFTIM. In CFTIM scheme, non interfering sources (transmitters) use CSMA/CA to communicate with relays. Whilst, high interfering sources and best relays use flexible TDMA to communicate with coordinator (C) through using stable channels. Simulation results of the proposed scheme are compared to other schemes and consequently CFTIM scheme outperforms in all cases. These results prove that the proposed scheme mitigates interference, extends WBAN energy lifetime and improves the throughput. To further reduce the interference level, we analytically show that the outage probability can be effectively reduced to the minimal.Comment: 2015 IEEE International Conference on Protocol Engineering (ICPE) and International Conference on New Technologies of Distributed Systems (NTDS), Paris, France. arXiv admin note: text overlap with arXiv:1602.0865

    A universal approach to coverage probability and throughput analysis for cellular networks

    No full text
    This paper proposes a novel tractable approach for accurately analyzing both the coverage probability and the achievable throughput of cellular networks. Specifically, we derive a new procedure referred to as the equivalent uniformdensity plane-entity (EUDPE)method for evaluating the other-cell interference. Furthermore, we demonstrate that our EUDPE method provides a universal and effective means to carry out the lower bound analysis of both the coverage probability and the average throughput for various base-station distribution models that can be found in practice, including the stochastic Poisson point process (PPP) model, a uniformly and randomly distributed model, and a deterministic grid-based model. The lower bounds of coverage probability and average throughput calculated by our proposed method agree with the simulated coverage probability and average throughput results and those obtained by the existing PPP-based analysis, if not better. Moreover, based on our new definition of cell edge boundary, we show that the cellular topology with randomly distributed base stations (BSs) only tends toward the Voronoi tessellation when the path-loss exponent is sufficiently high, which reveals the limitation of this popular network topology

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing

    A Universal Approach to Coverage Probability and Throughput Analysis for Cellular Networks

    Full text link

    Predictable Reliability In Inter-Vehicle Communications

    Get PDF
    Predictably reliable communication in wireless networked sensing and control systems (WSC) is a basic enabler for performance guarantee. Yet current research efforts are either focus on maximizing throughput or based on inaccurate interference modelling methods, which yield unsatisfactory results in terms of communication reliability. In this dissertation, we discuss techniques that enable reliable communication in both traditional wireless sensor networks and highly mobile inter-vehicle communication networks. We focus our discussion on traditional wireless sensor networks in Chapter 2 where we discuss mechanisms that enable predictable and reliable communications with no centralized infrastructures. With the promising results in Chapter 2, we extend our methods to inter-vehicle communication networks in Chapter 3. We focus on the broadcast communication paradigm and the unique challenges in applying the PRK interference model into broadcast problems in highly mobile inter-vehicle communication networks. While Chapter 2 and Chapter 3 focus on average reliability, we switch our problem to a more challenging aspect: guaranteeing short-term per-packet reception probability in Chapter 4. Specifically, we describe the PRKS protocol in Chapter 2 which considers unicast transmission paradigm in traditional static wireless sensor networks. PRKS uses the PRK interference model as a basis for interference relation identification that captures characteristics of wireless communications. For communication reliability control, we design a controller that runs at each link receiver and is able to control the average link reliability to be no lower than an application requirement as well as minimizing reliability variation. We further evaluate PRKS with extensive ns-3 simulations. The CPS protocol described in Chapter 3 considers an one-hop broadcast problem in multi-hop inter-vehicle communication networks. We analyze the challenges of applying the PRK model in this particular setting and propose an approximated PRK model, i.e., gPRK model, that addresses the challenges. We further design principles that CPS uses to instantiate the gPRK model in inter-vehicle communications. We implement the CPS scheduling framework in an integrated platform with SUMO and ns-3 to evaluate our design. In Chapter 4, we conservatively estimate the background interference plus noise while nodes are receiving packets. In the meantime, receivers decide minimum power levels their sender should use and feedback their decisions to their senders. Senders fuse feedbacks and choose a power level that guarantees expected packet reception probability at each receivers’ side. We notice in our evaluation that guaranteeing short-term reliability causes extra concurrency loss

    Predictable Reliability In Inter-Vehicle Communications

    Get PDF
    Predictably reliable communication in wireless networked sensing and control systems (WSC) is a basic enabler for performance guarantee. Yet current research efforts are either focus on maximizing throughput or based on inaccurate interference modelling methods, which yield unsatisfactory results in terms of communication reliability. In this dissertation, we discuss techniques that enable reliable communication in both traditional wireless sensor networks and highly mobile inter-vehicle communication networks. We focus our discussion on traditional wireless sensor networks in Chapter 2 where we discuss mechanisms that enable predictable and reliable communications with no centralized infrastructures. With the promising results in Chapter 2, we extend our methods to inter-vehicle communication networks in Chapter 3. We focus on the broadcast communication paradigm and the unique challenges in applying the PRK interference model into broadcast problems in highly mobile inter-vehicle communication networks. While Chapter 2 and Chapter 3 focus on average reliability, we switch our problem to a more challenging aspect: guaranteeing short-term per-packet reception probability in Chapter 4. Specifically, we describe the PRKS protocol in Chapter 2 which considers unicast transmission paradigm in traditional static wireless sensor networks. PRKS uses the PRK interference model as a basis for interference relation identification that captures characteristics of wireless communications. For communication reliability control, we design a controller that runs at each link receiver and is able to control the average link reliability to be no lower than an application requirement as well as minimizing reliability variation. We further evaluate PRKS with extensive ns-3 simulations. The CPS protocol described in Chapter 3 considers an one-hop broadcast problem in multi-hop inter-vehicle communication networks. We analyze the challenges of applying the PRK model in this particular setting and propose an approximated PRK model, i.e., gPRK model, that addresses the challenges. We further design principles that CPS uses to instantiate the gPRK model in inter-vehicle communications. We implement the CPS scheduling framework in an integrated platform with SUMO and ns-3 to evaluate our design. In Chapter 4, we conservatively estimate the background interference plus noise while nodes are receiving packets. In the meantime, receivers decide minimum power levels their sender should use and feedback their decisions to their senders. Senders fuse feedbacks and choose a power level that guarantees expected packet reception probability at each receivers’ side. We notice in our evaluation that guaranteeing short-term reliability causes extra concurrency loss

    Throughput Maximization in Unmanned Aerial Vehicle Networks

    Get PDF
    The use of Unmanned Aerial Vehicles (UAVs) swarms in civilian applications such as surveillance, agriculture, search and rescue, and border patrol is becoming popular. UAVs have also found use as mobile or portable base stations. In these applications, communication requirements for UAVs are generally stricter as compared to conventional aircrafts. Hence, there needs to be an efficient Medium Access Control (MAC) protocol that ensures UAVs experience low channel access delays and high throughput. Some challenges when designing UAVs MAC protocols include interference and rapidly changing channel states, which require a UAV to adapt its data rate to ensure data transmission success. Other challenges include Quality of Service (QoS) requirements and multiple contending UAVs that result in collisions and channel access delays. To this end, this thesis aims to utilize Multi-Packet Reception (MPR) technology. In particular, it considers nodes that are equipped with a Successive Interference Cancellation (SIC) radio, and thereby, allowing them to receive multiple transmissions simultaneously. A key problem is to identify a suitable a Time Division Multiple Access (TDMA) transmission schedule that allows UAVs to transmit successfully and frequently. Moreover, in order for SIC to operate, there must be a sufficient difference in received power. However, in practice, due to the location and orientation of nodes, the received power of simultaneously transmitting nodes may cause SIC decoding to fail at a receiver. Consequently, a key problem concerns the placement and orientation of UAVs to ensure there is diversity in received signal strength at a receiving node. Lastly, interference between UAVs serving as base station is a critical issue. In particular, their respective location may have excessive interference or cause interference to other UAVs; all of which have an impact on the schedule used by these UAVs to serve their respective users

    Flexible Spectrum Assignment for Local Wireless Networks

    Get PDF
    In this dissertation, we consider the problem of assigning spectrum to wireless local-area networks (WLANs). In line with recent IEEE 802.11 amendments and newer hardware capabilities, we consider situations where wireless nodes have the ability to adapt not only their channel center-frequency but also their channel width. This capability brings an important additional degree of freedom, which adds more granularity and potentially enables more efficient spectrum assignments. However, it also comes with new challenges; when consuming a varying amount of spectrum, the nodes should not only seek to reduce interference, but they should also seek to efficiently fill the available spectrum. Furthermore, the performances obtained in practice are especially difficult to predict when nodes employ variable bandwidths. We first propose an algorithm that acts in a decentralized way, with no communication among the neighboring access points (APs). Despite being decentralized, this algorithm is self-organizing and solves an explicit tradeoff between interference mitigation and efficient spectrum usage. In order for the APs to continuously adapt their spectrum to neighboring conditions while using only one network interface, this algorithm relies on a new kind of measurement, during which the APs monitor their surrounding networks for short durations. We implement this algorithm on a testbed and observe drastic performance gains compared to default spectrum assignments, or compared to efficient assignments using a fixed channel width. Next, we propose a procedure to explicitly predict the performance achievable in practice, when nodes operate with arbitrary spectrum configurations, traffic intensities, transmit powers, etc. This problem is notoriously difficult, as it requires capturing several complex interactions that take place at the MAC and PHY layers. Rather than trying to find an explicit model acting at this level of generality, we explore a different point in the design space. Using a limited number of real-world measurements, we use supervised machine-learning techniques to learn implicit performance models. We observe that these models largely outperform other measurement-based models based on SINR, and that they perform well, even when they are used to predict performance in contexts very different from the context prevailing during the initial set of measurements used for learning. We then build a second algorithm that uses the above-mentioned learned models to assign the spectrum. This algorithm is distributed and collaborative, meaning that neighboring APs have to exchange a limited amount of control traffic. It is also utility-optimal -- a feature enabled both by the presence of a model for predicting performance and the ability of APs to collaboratively take decisions. We implement this algorithm on a testbed, and we design a simple scheme that enables neighboring APs to discover themselves and to implement collaboration using their wired backbone network. We observe that it is possible to effectively gear the performance obtained in practice towards different objectives (in terms of efficiency and/or fairness), depending on the utility functions optimized by the nodes. Finally, we study the problem of scheduling packets both in time and frequency domains. Such ways of scheduling packets have been made possible by recent progress in system design, which make it possible to dynamically tune and negotiate the spectrum band [...
    • …
    corecore