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CHAPTER 1: INTRODUCTION

1.1 Wireless Networked Sensing and Control Systems

Evolving from the traditional centralized wired control systems, wireless networked sens-

ing and control (WSC) systems feature distributed control in wireless networks [1]. In WSC sys-

tems, communication network is an indispensable component which is responsible for digital sig-

nal transmissions. As the name implies, WSC systems adopt wireless networking technologies to

reduce deployment cost and possibly improve system maintenance experience. Due to dynamics

in non-deterministic and asymmetric signal propagation in wireless medium, communications in

WSC systems suffer from packet loss. As a result, WSC systems may not react immediately to

system changes because of communication failures. There has been a lot of research efforts on this

topic that try to improve WSC system performance. One of the goals is to ensure reliable com-

munication for each link in communication systems. Reliable communication is a key factor to

guarantee predictable system behavior given that control feedback is crucial for close-loop control

systems. Interestingly, there exists an inherent trade-off among network throughput, delay, and

reliability [2]. Due to the different impacts reliability, delay, and throughput have on WSC sys-

tems, a WSC system usually requires fine-grained control over the trade-off to guarantee system

performance. As a first step toward predictable system behavior and performance in WSC systems,

we focus on predictable and controllable link reliability guarantee. By controlling link reliability,

people can tune the trade-off to their needs and move WSC systems to the optimal operation point

where their benefits are maximized.

Unlike traditional WSC systems that adopt static wireless sensor to form communication

networks, WSC in vehicular networks is more challenging. First, the open environments in which

vehicles move are more unpredictable since they may contain trees, buildings, rivers, tunnels , and

mountains, etc. Such environmental factors affect wireless signal propagation significantly; Sec-

ond, the high mobility of vehicles causes inter-vehicle communication network topology (in terms

of vehicle distribution) to change constantly . Information exchanged in such network requires

frequent update in order to remain valid. Existing solutions for communication networks in tradi-
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tional static WSC systems usually cannot perform well in inter-vehicle communication networks.

Such unique challenges in inter-vehicle communication networks demands new solutions; Third,

solution evaluation for inter-vehicle communication networks usually relies on simulation since

real world evaluation platforms have high cost. Although several simulators that can be tuned to

evaluate solutions for inter-vehicle communication networks, they all tend to be inaccurate. To im-

prove evaluation accuracy, researchers have implement a PHY layer for the ns-3 simulator [3] that

simulates signal processing process [4]. Despite many decent efforts people have made, simulation

time of solution evaluation remains a challenge due to high density and the large-scale nature of

inter-vehicle communication systems.

One of the fundamental cause to packet reception failures in wireless communication is

interference. It is difficult for packet receivers to correctly decode packets when large interfer-

ence exists simultaneously. Interference modeling in the past literature falls into three categories:

protocol model, physical model, and their hybrid. Recently, a hybrid model, the Physical-Ratio-K

(PRK) interference model, was proposed in [5] which combines the strengths of the previous two

models and is suitable for distributed scheduling. We show in Chapter 2 and Chapter 3 that the

PRK model is able to model interference relations between network nodes accurately.

1.2 Contributions

In this section, we present the summary of our contributions and the outline of this disser-

tation.

• PRK-based scheduling with predictable reliability guarantee for wireless networked

sensing and control [6]. In this work, we solved an issue on reliable unicast communication.

Network nodes adaptively declare their neighbors as conflicting with themselves based on

their link reliability. The intuition is that when a link has low link reliability, the receiver

of the link declare more neighbors as conflicting. On the contrary, when a link achieves

higher reliability than it needed, the receiver of the link tries to declare fewer neighbors as

conflicting in order to allow more neighbors to transmit concurrently and improve network

throughput. We formulate the controllable link reliability problem into a regulation control
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problem and design a controller to adaptively control the parameter of the PRK model such

that the mean reliability of each link is no less than a given value, i.e., the communication

reliability required by applications. Furthermore, we design a scheduling algorithm based

on the control problem and address issues related to scheduling and protocol signaling.

• Cyber-physical interference modeling for reliability of inter-vehicle communications [7].

With the previous work that guarantees predictable reliable communication in mostly-static

networks, we switch our focus to a more challenging problem that involves high mobility. In

this work, we address the one-hop broadcast problem in inter-vehicle communication net-

works. We use the same approach to control per-link reliability. However, a sender can have

multiple receivers in broadcast settings. How do these receivers of the same sender cooper-

ate to achieve reliable communication yet guarantee close-to-optimal network throughput is

a key goal in this work. One of our major contributions in this work is to solve this prob-

lem. To this end, we define an approximated PRK model for inter-vehicle communication to

address the problem of large communication overhead. We further propose mechanisms to

let receivers cooperatively adapt their PRK model parameter K regarding the same sender.

We also use unscented Kalman filter to estimate vehicle locations which are then used to

estimate interference relationships between vehicles.

• Enabling short-term reliability in inter-vehicle communication with power control. In

this work, we design a power control scheme and apply it jointly with a distributed schedul-

ing strategy in order to achieve short-term packet successful reception probability guarantee.

We extensively use samples from the network and estimate their statistics. We then use

the statistics to guide our decision and provide probabilistic interference plus noise bound,

power control feedback, etc. We also evaluate our solution in a network with complex yet

realistic settings.

1.3 Organization

The rest of this dissertation is organized as follows: Chapter 2 describes the PRKS protocol

that guarantees reliable communication in wireless sensor networks; Chapter 3 describes the CPS
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protocol that enable reliable one-hop broadcast in inter-vehicle communication networks; Chap-

ter 4 covers our solution for enabling short-term link reliability using power control techniques;

Chapter 5 concludes this dissertation.
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CHAPTER 2: SCHEDULING WITH PREDICTABLE LINK

RELIABILITY FOR WIRELESS NETWORKED CONTROL

2.1 Introduction

Due to difficulties in achieving good control-ability in open-loop control, the embedded

wireless networking community are exploring closed-loop sensing and control solutions for vari-

ous applications such as real-time or environmental sensing [8]. Message passing in wireless net-

worked sensing and control (WSC) is extremely important for network-wide or local coordinations

among system components in WSC. Reliable and real-time message passing in mission-critical

systems such as industrial process control is a basic requirement [8, 1]. However, various research

efforts have revealed that the wireless medium is inherently dynamic and possesses uncertainties.

Specific to wireless communications, collisions caused by co-channel interference introduced by

concurrent transmissions are major sources of uncertainties [5, 9, 10]. To control interference and

improve network throughput as well as reliability, scheduling algorithms become important for

message passing in WSC systems.

Combining control and wireless networking together, WSC systems inherit both uncertain-

ties in wireless communications and dynamics in control systems. Thus, WSC systems usually

have different requirements on reliability and real-time in message passing [11]. While central-

ized scheduling algorithms generally yield better results compared to their counterparts, they can

be infeasible in practice due to lack of infrastructure support or the large scale of networks them-

selves. Therefore, distributed scheduling algorithms become desirable for interference control in

WSC networks. The state-of-art literature controls interference in scheduling by assuming the un-

derlying interference model among network nodes is either protocol interference model or phys-

ical interference model. As [5] shows, neither of them should be used for designing distributed

scheduling algorithms as they could be either inaccurate or infeasible, respectively.

The physical interference model considers all concurrent transmitters network-wide when

deciding SINR values at receivers side, thus rendering high-fidelity results. However, since it re-

quires network-wide information, it is combinatorial and not suitable for distributed scheduling
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algorithm design as distributed algorithms should only use local information for decision-making.

Scheduling algorithms based on physical interference model have strong assumptions on network-

wide knowledge, node locations, as well as wireless channel conditions. All of these factors may

not be available in practice. As a result, the physical interference model may not guarantee relia-

bility and real-time in communication [12, 13, 14, 15]. There are also works that do not assume

additive interference, such as [16], which is not true in practice. In addition, there are schedul-

ing algorithms that aim at improving throughput and do not control multi-hop interference for

reliability-aware scheduling [17, 5].

On the contrary, the protocol interference model is inherently local and suitable for dis-

tributed scheduling algorithm design as well as implementation. Yet it is not a perfect choice for

practical work due to its flaws in representing real-world facts. For instance, network nodes be-

yond the region defined by protocol model can still be regarded as interfering nodes. [18]. In a

field test, the RTS-CTS based handshake style scheduling algorithm only achieves packet delivery

ratio (PDR) of around 50% [9]. [19] also shows that CSMA and RTS-CTS based medium access

algorithms may only achieve PDR of 16.9% and 36.8% respectively. As a side note, PDR is de-

fined as the ratio of the number of received packets to the number of transmitted packets of a link.

General pairwise interference models have also been considered in theoretical study [20, 21], but

the important question of how to identify the set of links that interfere with a link is not addressed,

and their implementation usually assumes a model similar to the protocol model [21].

The above discussion has identified a need for a better interference model which should

possess high fidelity comparable to that of the physical interference model and be suitable for

distributed scheduling in WSC systems. The PRK interference model proposed in [5] integrates

merits from both physical interference model and protocol interference model. As [6] shows,

the PRK interference model help achieves accurate interference modeling by ensuring predictable

packet delivery ratio under realistic assumptions. For a link with sender S and receiver R, a

concurrent transmitter C interferes with data transmissions of S to R and thus may cause packet
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decode errors at receiver R if and only if

PC,R >
PS,R

KS,R,TS,R

. (2.1)

In the above equation, PC,R and PS,R denote signal strength introduced by C’s transmission and

S’s transmission to receiver R, respectively. The parameter KS,R,TS,R
is the minimum real number

chosen such that with all situations considered, the packet delivery ratio from S to R is at least

TS,R. TS,R is an application requirement posed by WSC systems.

The PRK interference model is local because its definition only needs PC,R and PS,R which

are locally measurable. The application requirement TS,R is application-specific and is irrelevant

to scheduling algorithm design regardless of distributed or centralized ones. As shown in [6],

scheduling algorithms should tune the parameter KS,R,TS,R
in order to adapt network dynamics

to meet the application required TS,R. The PRK interference model is of high-fidelity because it

requires network nodes to directly measure signal strength from close-by neighbors. As a result,

it is able to capture different dynamics in wireless communications, for instance, small-scale and

large scale fading, cumulative interference, etc. Experiment study and analysis in [5] have shown

PRK interference model’s potential in achieving required link reliability in scheduling. Scheduling

algorithms using the PRK interference model can help reduce data delivery delay by minimizing

packet retransmissions. [5] also shows PRK-based scheduling algorithms can enable throughput

of 95% of what a physical model based scheduling can achieve. As a result, the PRK interference

model is a promising model to achieve accurate interference control and is able provide agile

adaptation to network dynamics.

The PRK work focuses on formulating the PRK interference model and its analytical char-

acteristics but has not addressed the actual scheduling problem. Thus, the PRK-based scheduling

problem is left open. To design a PRK-based scheduling algorithm, we have to address the follow-

ing key issues.
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• Due to variations in wireless channel, the parameter KS,R,TS,R
in Equation 2.1 may not be

able to guarantee a minimum PDR of TS,R. In such a case, how should a link 〈S,R〉 change

the parameter KS,R,TS,R
to achieve TS,R?

• For a link 〈S,R〉 and its PRK model parameter KS,R,TS,R
, it defines an exclusion region

ES,R,TS,R
at the receiver R’s side. According to the PRK interference model, only nodes

C /∈ ES,R,TS,R
are allowed to transmit concurrently with S. However, interference range is

generally larger than data communication range of nodes, how would a node ensure nodes in

ES,R,TS,R
do not transmit concurrently with itself, especially when wireless channels them-

selves have uncertainties?

To address the open question of PRK-based scheduling, we have designed a fully dis-

tributed, reliability-aware PRK-based MAC layer scheduling algorithm called PRKS. We have

modeled the PRK interference model parameter KS,R,TS,R
instantiation problem as a minimum-

variance regulation control problem. We designed such a controller and let it run at each link to

allow each link to adapt the parameter KS,R,TS,R
independently in order to achieve the application

requirement TS,R. To prevent nodes in exclusion from transmitting concurrently, we have pro-

posed to record neighbor average signal strength attenuation into a map, called signal map. Later

when a link decides if a neighbor is in its exclusion region or not, the link checks if the calculated

average signal strength that would be introduced by the same neighbor is greater than the signal

strength that defines its exclusion region boundary. If smaller, the neighbor is not considered as

in the links exclusion region and can transmit concurrently with the link itself. We propose to use

control packets that are sent in a separate frequency domain to share information and build signal

map records. One intuition of this decision is that PRKS needs high transmission power to allow

nodes beyond normal data transmission range to receive packet correctly in order to decode neces-

sary information piggybacked in control packets to enable signal strength attenuation calculation.

Another intuition is that we do not wish transmissions for control packet generate extra deadly

interference to normal data receptions.
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We have implemented PRKS in ns-3.13 [3]. Through extensive experimental analysis, we

observe that 1) the distributed controllers enable network-wide convergence to a state where the

desired link reliabilities are ensured, 2) unlike existing scheduling protocols where link reliability

can be as low as 2.49%, PRKS enables predictably high link reliability (e.g., 95%) in different

network and environmental conditions without a priori knowledge of these conditions, 3) through

local, distributed coordinations, PRK achieves a throughput very close to what is enabled by the

state-of-the-art centralized scheduler iOrder [22] while ensuring the required link reliability.

The rest of the chapter is organized as follows. We elaborate on the design of PRKS in

section 2.2, and we evaluate the performance of PRKS in section 2.3. We discuss related work in

Section 2.4 and make concluding remarks in Section 2.5.

2.2 PRKS: PRK-based Scheduling

In this chapter, we focus on a scenario where network nodes do not move or move very

slowly in a way such that for two nodes in the WSC network, the average signal attenuation

between two nodes do not change fast. For instance, the average changes in minutes. This is

so that the way we sample signal map records as will be discussed in Section 2.2.2 can achieve

high accuracy in capturing average signal attenuations. We focus our scheduling algorithm on

links chosen such that without interference, the expected data delivery ratio will be higher than the

application requirement TS,R. We will discuss achieving predictable link PDR in the next section.

In this section, we first present the design of a minimum-variance controller. We then present

a signal map sampling method in the NetEye sensor testbed. Finally, we discuss the distributed

PRKS scheduling algorithm which is based on the PRK interference model.

2.2.1 A control-theoretic approach to PRK model instantiation

Minimum-variance regulation control. The intuition of designing a minimum-variance reg-

ulation controller is such that when network conditions change, a link 〈S,R〉 should be able to

adapt to the changes by changing its PRK model parameter KS,R,TS,R
accordingly. Later in this

section, we will present the control law. We formulate the problem of instantiating the parameter

KS,R,TS,R
as a classical regulation control problem [23] in order to use the tool set control theory
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offers to designing and reasoning. In the formulated control problem, the “reference input” is the

application required link reliability TS,R, and the “output” is the PRK model parameter KS,R,TS,R
.

To formulate the control problem completely, we need to identify its “plant model”, i.e.,

how would the PRK model parameter KS,R,TS,R
change given a link PDR output YS,R. This is chal-

lenging because the relation is complicated, and the decision depends on in-situ network dynamics

which can be unpredictable. Intuitively, we notice that a PRK model parameter KS,R,TS,R
corre-

sponds to a distribution of the background interference. By changing KS,R,TS,R
, we are changing

the background interference observed at the receiver R’s side. To facilitate our discussion, let ∆IR

denote the change of interference at receiver R. We propose to use ∆IR to be the actual con-

trol input for the minimum-variance controller. By doing so, we can employ findings of existing

communication theory to drive the relation between YS,R and ∆IR as follows.

To ease the discussion, let IR(t) denote the background interference including a zero-mean

white noise at receiver R’s side in the unit of dBm at time t. Let PS,R be the received normal data

reception signal strength in the unit of dBm. For a given modulation and coding scheme, according

to communication theory, we have [5]

YS,R(t) = f(PS,R(t)− IR(t)), (2.2)

In the above equation, PS,R − IR represents the SINR value at receiver R’s side in dB. f(·) is

an increasing function that maps SINR value to PDR. Existing works have identified that f(·) is

non-linear. To address the challenges in non-linear control, we propose to approximate function

f(·) by multiple line functions. Depending on the current operating point of the control system,

we use self-tuning regulators [23] to adapt controller behaviors. For SINR γ(t) = PS,R(t)− IR(t)

at time t, we approximate f(·) with the following linear function formulation:

YS,R(t) = a(t)(PS,R(t)− IR(t)) + b(t), (2.3)
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where a(t) is the derivative of function f(·) when the γ(t) = PS,R(t) − IR(t), that is, a(t) =

f ′(PS,R(t)− IR(t)), and b(t) = f(PS,R(t)− IR(t))− (PS,R(t)− IR(t))f
′(PS,R(t)− IR)(t). Note

that time t does not denote time slot. Instead, it denotes the time a link adapts its PRK model

parameter KS,R,TS,R
.

Given that background noise in sensor networks is normally formulated as a zero-mean

random variable, we assume the noise keeps the same from time t to t + 1. The interference

experienced at receiver R’s side can change due to the following reasons:

• From one controller adaptation happened at time t to the next controller adaptation happened

at t+1, unless link reliability is exactly the same as TS,R, the controller running on link 〈S,R〉

needs to adapt in order to meet the application requirement. We denote the PRK model

parameter at time t as KS,R,TS,R
(t) and similarly denote the PRK model parameter at time

t+1 as KS,R,TS,R
(t+1). Then we have KS,R,TS,R

(t+1) 6= KS,R,TS,R
(t+1) if link reliability

YS,R(t + 1) 6= TS,R. Due to the change in PRK model parameter K, the exclusion region

defined by the parameter K also changes from t to t+1. We denote the two exclusion regions

as ES,R,TS,R
(t) and ES,R,TS,R

(t + 1) respectively. Assume KS,R,TS,R
(t + 1) > KS,R,TS,R

(t),

then the link 〈S,R〉 should increase its exclusion region as compared to that at time t. In this

case, nodes that belong to ES,R,TS,R
(t+1)\ES,R,TS,R

(t) and were once able to transmit before

controller adaptation at time t + 1 but can no longer transmit after the controller adaptation

at time t+1 are the source of difference in background interference. We denote it as ∆IR(t).

Notice that this ∆IR(t) is the control input to the minimum-variance controller. Note that

similarly, if KS,R,TS,R
(t + 1) < KS,R,TS,R

(t), the link 〈S,R〉 should decrease its exclusion.

Notice that nodes in ES,R,TS,R
(t)\ES,R,TS,R

(t+1) contributes to the background interference

difference as denoted by ∆IR(t)

• Another source of interference difference comes from concurrent transmissions that hap-

pened outside of both ES,R,TS,R
(t) and ES,R,TS,R

(t + 1). The concurrent transmitter set be-

tween t and t + 1 can be different. Thus, the interference introduced by these concurrent

transmitters also changes. We let ∆IU(t) denote the change. Since the minimum-variance
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controller only prevents nodes in exclusion region from transmission, ∆IU(t) is out of the

controller’s control. We propose to model ∆IU(t) as system disturbance. We use µU(t) to

denote the mean of ∆IU(t) and use σ2
U (t) to denote its variance.

According to the above discussion, we have

IR(t + 1) = IR(t) + ∆IR(t) + ∆IU(t),

where ∆IR(t) and ∆IU(t) are in unit of dB. Using the linear approximation of function f as shown

by Equation (2.3) at time t, the predicted link reliability for time t+ 1 calculates as follows:

YS,R(t+ 1) = a(t)(PS,R(t + 1)− IR(t+ 1)) + b(t).

Therefore, the “plant model” for link 〈S,R〉 at time t is

IR(t + 1) = IR(t) + ∆IR(t) + ∆IU (t)

YS,R(t+ 1) = a(t)(PS,R(t + 1)− IR(t+ 1)) + b(t)
(2.4)

where IR(·) and YS,R(·) are the “state” and the “output” of the plant respectively. To deal with

the noise in measuring YS,R(·), we use an exponentially-weighted-moving-average (EWMA) filter

with a weight factor c (0 ≤ c < 1) in the feedback loop [23]. Thus, the system model is as shown

in Figure 2.1, where

y(t) = cy(t− 1) + (1− c)YS,R(t).

= cy(t− 1) + (1− c)[a(t− 1)(PS,R(t)− IR(t)) + b(t− 1)]
(2.5)

Since dynamics in wireless communication and packet decoding process, the measured link

reliability denoted as y(t) in the previous formulation has oscillations. Also note that interference

changes from outside of exclusion region of a link as denoted by ∆IU(t) is beyond the controller’s

control, we propose to minimize the perturbations of the measured y(t) on the condition that the
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Figure 2.1: PRK model instantiation: minimum-variance regulation control diagram

average link reliability is still guaranteed, i.e., E[y(t+ 1)] = TS,R + δY . Note that δY ≥ 0 is used

to control the probability of the measured y(t) when it is smaller than TS,R which will be covered

by Theorem 2 shortly. Formally, we have the following theorem for the minimum-variance control

problem:

Theorem 1. The control input that minimizes var[y(t+1)] while ensuring E[y(t+1)] = TS,R+δY

is

∆IR(t) =
cy(t) + (1− c)YS,R(t)− TS,R − δY

(1− c)a(t)
− µU(t), (2.6)

and the minimum value of var[y[t+ 1]] is

σ2
y,min(t+ 1) = (1− c)2a(t)2σ2

U(t). (2.7)

(Interested readers can find the proof in [24].)

As we will show later, the scheduling algorithm depends on random numbers to decide

transmitting node, thus we assume the concurrent transmitters are randomly distributed in the net-

work. Therefore, we assume µU(t) tends to be zero statistically in our PRK-based scheduling

problem settings. We have verified this claim by inspecting a typical link in the evaluation sce-

nario specified in section 2.3. For instance, µU(t) = 0.00005dB with a 95% confidence interval

of [−0.0453dB, 0.0452dB]. Moreover, as figure 2.2 shows, ∆IU (t) varies around zero dB with

high probability. This justifies our claim on µU(t) is statistically zero. Therefore, in our future

discussions, we will assume µU(t) is zero.
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Figure 2.2: Cumulative distribution function (CDF) of ∆IU(t) at a typical link

In theory, the design of the controller (2.6) guarantees the link reliability for link 〈S,R〉 is

at least TS,R. As mentioned earlier, the probability Pr{y(t) < TS,R} can be controlled by adjust

δY (t). For this issue, we have,

Theorem 2. Pr{y(t+ 1) ≤ TS,R} ≤ (1− c)2a(t)2σ2
U(t)

δ2Y
.

Proof. By Chebyshev Inequality,

Pr{|y(t+ 1)−E[y(t+ 1)]| ≥ kσy(t+1)} ≤ 1

k2
.

Thus,

Pr{y(t+ 1) ≤ E[y(t+ 1)]− kσy(t+1)} ≤ 1

k2
.

With the control design(2.6), E[y(t+ 1)] = TS,R + δY . Thus,

Pr{y(t+ 1) ≤ TS,R + δY − kσy(t+1)} ≤ 1

k2
.
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Letting δY − kσy(t+1) = 0, we have k =
σy

σy(t+1)

. Thus

Pr{y(t+ 1) ≤ TS,R} ≤
σ2
y(t+1)

δ2Y
.

From (2.7), σ2
y(t+1) = (1− c)2a(t)2σ2

U(t) with the control design (2.6). Thus,

Pr{y(t+ 1) ≤ TS,R} ≤ (1− c)2a(t)2σ2
U(t)

δ2Y
.

Theorem 2 shows that the undershoot probability is decided by three factors. c denotes the

parameter we have chosen for EWMA filter, δY is a non-negative parameter we used to guarantee

the average link reliability to be at least TS,R + δY . Notice that since our minimum-variance

controller aims at minimizing the variance of y(t), we can reduce the undershoot probability by

increasing δY . σ2
U is the interference difference variance from out side of receiver R’s exclusion

region. As our discussion reflected, we are interested in average link reliability. Short-term or

expected per-packet reception probability is relegated as future work. In our evaluation, we let

δY = 0 and c = 15/16.

From ∆IR(t) to KS,R,TS,R
(t + 1). To instantiate the PRK model parameter KS,R,TS,R

(t + 1),

we need to measure link reliability, signal strength from both S to R and neighbors to R. Since

packet reception happens at receivers’ side, and much information needed for instantiating PRK

model parameter can directly be measured by R, receiver side becomes the perfect place for a link

to run the minimum-variance controller with its input defined in Equation 2.6. Based on measured

y(t) and y(t + 1), and use our proposed controller, a receiver R is able to compute a control

input ∆IR(t). The actual PRK model parameter instantiation takes ∆IR(t) as input and considers

increasing KS,R,TS,R
(t+1) or decreasing KS,R,TS,R

(t+1) depending on the value of ∆IR(t). More
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specifically, we have:





KS,R,TS,R
(t+ 1) = KS,R,TS,R

(t), if ∆IR(t) = 0

KS,R,TS,R
(t+ 1) > KS,R,TS,R

(t), if ∆IR(t) < 0

KS,R,TS,R
(t+ 1) < KS,R,TS,R

(t), if ∆IR(t) > 0

(2.8)

In case of exclusion region increase, |∆IR(t)| denotes the interference introduced by nodes in

ES,R,TS,R
(t + 1) \ ES,R,TS,R

(t). Similarly, in case of exclusion region decrease, |∆IR(t)| denotes

the interference introduced by nodes in ES,R,TS,R
(t) \ES,R,TS,R

(t+1). With the help of signal map

records reside at receiver R’s side, the PRK model parameter instantiation process, also called

exclusion region adaptation process, can be achieved by only involving receiver R. We will dis-

cuss local signal maps in Section 2.2.2. Interested readers can check the detailed derivation of

KS,R,TS,R
(t+ 1) at Section 2.1 of [24].

Stability of self-tuning adaptive control. As aforementioned, the controller design and analysis

employ linear approximation (2.3) of a theoretical non-linear curve. The actual control output be-

comes less accurate as the system operating point digresses from the point of TS,R. By inspecting

theoretical SINR-PDR curve, we notice that when y(t) is far away from the application required

reliability, the slope of linear approximation lines (2.3) introduce either extremely slow conver-

gence rate (when y(t) ∼ 0) or too drastic changes (when t(t) ∼ 1). This drastic changes usually

cause system to be unstable. Assuming the target operating point is A where the link reliability is

TS,R in Figure 2.3, for instance, applying the linear model (2.3) and the control input (2.6) when

the operating point is B at time t will lead to E[y(t + 1)] = TB′ , which is significantly lower

than TS,R and thus leads to significant undershoot; similarly, applying the linear model (2.3) and

the control input (2.6) when the operating point is C at time t will lead to E[y(t + 1)] = TC′ ,

which is significantly higher than TS,R and thus leads to significant overshoot. Large undershoot

and overshoot certainly harm system stability. With wireless communication dynamics causing
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Figure 2.3: Convergence of adaptive control (2.6)

problem worse and the disturbance ∆IU(t) which is beyond controller’s control ability, we should

avoid them.

We therefore propose to use the linear approximation that connects y(t) and TS,R if y(t) is

quite different from TS,R. Suppose we use ar(t) to denote the new slope of the linear approximation

line, we revise the system and take value of ar(t) as follows:

ar(t) =






a(t), if |y(t)− TS,R| ≤ e0

a0, if |y(t)− TS,R| > e0

(2.9)

where e0 is a threshold value for the linear model (2.3) to be accurate around the neighborhood of

TS,R, and a0 =
TS,R − y(t)

f−1(TS,R)− f−1(y(t))
is the gradient of the line connecting the current operating

point y(t) and the target point TS,R on function f(·). Letting a(t) = a0 when |y(t) − TS,R| > e0

avoids overshoot and undershoot in the feedback control of KS,R,TS,R
(·) at link 〈S,R〉, thus pre-

venting YS,R(·) from oscillating around TS,R for a given mean disturbance µU(·) and helping enable

network-wide convergence in the regulation control. Note that, according to Huang et al. [25], the

functional form of f in Equation (2.2) and thus its gradient are much more stable than the specific
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realization of f (e.g., specific mapping between YS,R and PS,R − IR) across different network and

environmental conditions; hence letting ar(t) be a(t) instead of a0 when |y(t)− TS,R| ≤ e0 helps

address the inaccuracy of the theoretical model (2.2) in practice. In our implementation, we use a

value of 5% for e0 [24].

2.2.2 Protocol signaling for real-world use of the PRK model

One fundamental requirement for the PRK-based scheduling algorithm to work is to pre-

vent nodes lie in the exclusion region defined by the PRK model parameter KS,R,TS,R
(t) from

transmitting. We use ES,R,TS,R
(t) to denote the nodes defined by the PRK model parameter, i.e., a

node C ∈ ES,R,TS,R
(t) if and only if PC,R(t) ≥

PS,R(t)

KS,R,TS,R
(t)

. This requirement is challenging due

to the following aspects:

• The set ES,R,TS,R
(t) is usually larger than the normal data communication range of receiver

R. In this case, R cannot reach all nodes in ES,R,TS,R
(t) using normal data transmission

power.

• Wireless communication signal spreads in all directions, and can be anisotropic. It is difficult

for receiver R to only inform nodes in its exclusion region ES,R,TS,R
(t), no more and no less.

• Wireless communication channel is asymmetric in real-world settings, and signal attenuation

from receiver R to a neighbor C and from the neighbor C to receiver R can be different. This

would potentially make R and C see interfering relation differently. That is, R may believe

C lies in its exclusion region, but C may not by inspecting PC,R.

Local signal maps. To overcome the challenges listed above, we propose nodes in network

maintain a local signal map themselves. For each node R, each of its signal map records contains

the address, serving as ID, of one of its neighbor C and the average signal power attenuations h

from R to C and from C to R. Note that the signal power attenuation from R to C is not directly

available to R. Thus, C needs to send the average attenuation from R to C back to C as a feedback.

When nodes transmit packets for the purpose of establishing signal maps, they also piggyback

their packet transmission power in their packets. Receivers of such packets can then check the

transmission power of the packets, and also by sampling local RSSI, they are able to infer the
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signal attenuations between packet transmitters by themselves. Let PC denote the piggybacked

packet transmission power. As shown in Figure 2.4, PC,R denote the portion of received power

introduced by C to R. Since the sampled RSSI as denoted by Ptotal also contains interference and

noise, we use P ′
I to denote interference plus noise. To infer signal attenuation, we need to remove

P ′
I from RSSI. To achieve this, we also let node sample RSSI immediately after a successful packet

reception. The sampled RSSI as denoted by PI is believed to be close to the value of P ′
I , i.e.,

PC,R = Ptotal − P ′
I ≈ Ptotal − PI . (2.10)

As we will discuss in Section 2.2.3, [24] has verified that Ptotal and PI can be sampled at very short

A packet reception at R
P ~~ P
I I

'
P + P' = P
S,R I total

Time

Figure 2.4: Estimation of signal power attenuation

intervals (e.g., less than 0.01 milliseconds for TelosB motes [26]) and that the background noise

power as well as the interference power do not change much in such short intervals in CSMA/CA-

based wireless networks, the sum of the background noise power and the interference power do not

change much immediately before and immediately after a packet reception, i.e., P ′
I ≈ PI . Once R

gets a sample of PC,R, it can compute a sample of P ′
C,R as

P ′
C,R = PC − PC,R. (2.11)

This way, R can get a series of samples of P ′
C,R and then use these samples to derive the average

signal power loss from C to itself.

Notice that the above procedure involves no network-wide coordinations, thus is local. One

advantage of this method is that it directly samples RSSI and is able to capture various dynamics in

wireless communication, e.g., fading and shadowing. For instance, as mentioned in [24], Figure 2.5
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shows the boxplot of the relative errors1 in estimating power attenuation across links in the NetEye
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Figure 2.5: Relative errors in estimating link signal power attenuation in NetEye

[27] sensor network testbed when all the 130 TelosB motes transmit packets using the CSMA/CA-

based B-MAC [28] and at an average inter-packet interval of 25 seconds, 2.5 seconds, and 0.1

seconds respectively, which we denote as light traffic, medium traffic and heavy traffic respectively.

We see that the estimation is quite accurate. For instance, the relative estimation errors are all very

close to 0 and almost always less than 2%; in addition, the 95% confidence interval for the median

relative error is [−0.0508%, 0.0535%], [−0.0152%, 0.0280%], and [−0.0087%, 0.0245%] for the

light, medium, and heavy traffic condition respectively, thus the estimation error is 0 at the 95%

confidence level for all traffic conditions. We have also observed similar accuracy for estimating

link power attenuation in the Indriya testbed [29], showing the effectiveness of our method of

signal power attenuation estimation in different network and traffic conditions; interested readers

can find more detailed validation results for our estimation method in [30].

We maintain signal power attenuations in signal map instead of actual received signal

strength so that if a node knows the transmission power (possible a different from the power when

sampling attenuation) of a neighbor, the node can infer what will be the average reception power

1The relative error for a link is defined as the estimated attenuation minus the ground-truth attenuation and then

divided by the ground-truth attenuation.
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it will have when this neighbor node is transmitting. This is helpful when we do control signalling

for our PRK-based scheduling algorithm in Section 2.2.3.

Protocol signaling based on signal maps. In this work, we propose to use a different channel

for control signaling and assume communications in different frequency do not interfere with each

other. Given that each C ∈ ES,R,TS,R
(t) might be beyond normal data transmission range of

R, we use the power control algorithm proposed by [31] to enable high control signal reception

probability for each C. Thus, control signaling may use a transmission power level higher than

what normal data transmissions normally use. With such a power control algorithm, we have

addressed the challenges of signaling every interfering nodes in exclusion region which may well

be much larger than normal data communication range. Considering the larger coverage of the

entire network, the control signaling is still local.

For a receiver R, a sender S and a neighbor C, when R shares necessary information to

neighbors so that neighbors (in this case C) can figure out if they interfere with R’s data reception,

C shares signal power attenuation from S to R, signal power attenuation from C to R as well as

the PRK model parameter KS,R,TS,R
of link 〈S,R〉. Once C receives all the information, C is able

to estimate interference it can introduce to R by checking attenuation from C to R and assuming

predefined data transmission power. C can subtract the attenuation from transmission power. To

make the estimation more accurate, C should also consider transmission and reception power gains

as well as background noise. Once C figures out its potential interference to R, C can check the

ratio of
PS,R

PC,R

and see if the ratio is smaller than KS,R,TS,R
. If the ratio is no smaller than KS,R,TS,R

,

C is considered as an interferer to S and should not transmit concurrently with S.

Since every node in the network can achieve this check by overhearing control messages

in control channel, nodes in exclusion region will not transmit concurrently with the sender of the

link that defines the exclusion region.

With the controller described in Section 2.2.1, our protocol signaling mechanism and the

PRK model parameter instantiation method, we are able to develop a solution that has highly ac-

curate interference relation identification. Since all operations are local, the solution is suitable
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for distributed data transmission scheduling algorithm without infrastructure support in WSC net-

works.

2.2.3 Protocol PRKS: putting things together

With what we covered so far, we have a complete solution to identify interfering neighbors

with high accuracy. What is left is the actual data transmission scheduling. Only if a sender, say

S, transmits, shall all nodes in its corresponding receiver’s, say R, exclusion not transmit. In this

work, we assume normal data transmissions happen in the same channel. Thus, the major work is

to address co-channel interference. For reliable data transmission, we argue traditional RTS-CTS

carrier sensing schemes will not work because of the following reasons:

• When each node performs carrier sensing randomly, it is able to figure out when channel

is clear. Yet, it cannot eliminate the situation where two close-by neighbors suddenly start

transmission simultaneously.

• The RTS-CTS scheme is able to improve transmission reliability; however, it suffers from

both hidden- and exposed-terminal problem, which jeopardize successful packet delivery.

• These schemes do not have accurate interference modeling method, and are not able to con-

trol interference effectively.

The reason we choose to separate normal data transmission from control signaling in fre-

quency is because if control signaling is done in the same channel as normal data transmission,

as we have discussed before, because exclusion regions of links usually are larger than normal

data communication ranges, we need high transmission power for control signaling. Control sig-

naling with high transmission power will introduce deadly interference to on-going normal data

transmissions. This leads to system instability.

Thus, we choose to separate control and data packet transmissions in frequency to address

the challenges listed above. As shown in Figure 2.6, in control plane, a link 〈S,R〉 gets all the data

received for itself to figure out the links that lie in its exclusion region. The link also figures out

the links whose data reception will be negatively affected if the link itself transmits data packets,

please refer to Section 2.2.2 for details. We define these links as the conflict set of link 〈S,R〉.
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Figure 2.6: Architecture of PRKS

More specifically, a link 〈C,D〉 is in the conflict set of 〈S,R〉 and thus conflicting with 〈S,R〉

at time instant t if C ∈ ES,R,TS,R
or S ∈ EC,D,TC,D

, where TS,R and TC,D are required packet

delivery reliability across 〈S,R〉 and 〈C,D〉 respectively. Once we have well-defined conflict

set for links, transmission scheduling can follow the random link activation process called Link-

Activation-Multiple-Access (LAMA) as proposed in [32] which is a TDMA scheme. In LAMA,

a link 〈S,R〉 contents for medium access with all links in its conflict set. All links use a uniform

manner to define random number generator seed. The seeds are different only by link ID and time

slot. In our PRK-based scheduling algorithm, we assume every link has an ID, and these IDs are

known too all links. Thus, every link knows the random number generator seed of each other. This

also makes the outcome of random number generator of one link known to other links without any

data transmission. We call the out come of random number generator link priority. By considering

all conflicting links of link 〈S,R〉 and the link 〈S,R〉 itself, and if the link 〈S,R〉 has the highest

link priority, the link is considered as active for the slot that helped in defining random number

generator seeds. The conflicting links, by inspecting their own link priorities and compare with

the link priority link 〈S,R〉 has, automatically realize they are not allowed to transmit because
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they do not have the highest link priority value out of all their conflict links. In this way, we

achieve single transmission within an exclusion region. By PRK model definition, link reliability

is guaranteed. For our scheduling algorithm to work, we need accurately maintained exclusion

regions. These exclusion regions are controlled by PRK model parameters. Further more, the

controller that runs in each link generates input for PRK model parameter instantiations. As we

discussed before, the control design needs y(t) which is data transmission reliability. When 〈S,R〉

is active, S transmits data to R. The packet delivery status, whether success or failure, is passed to

link estimator that estimates data delivery reliability after enough packet transmissions have been

observed and results sampled. Notice that one benefit of high power control signaling is to help

nodes establish and maintain accurate signal maps as we have discussed in Section 2.2.2.

Our discussions in this chapter focus on ensuring data delivery reliability across links, thus

we have focused on the exclusion regions around receivers alone. If it is important to ensure ACK

reliability at the link layer (e.g., for avoiding unnecessary retransmissions), similar approaches to

protecting data receptions can be applied to protect ACK receptions by maintaining an exclusion

region around the transmitter of each link. For conciseness of the presentation, however, we only

focus on ensuring data delivery reliability in this chapter.

2.3 Experimental evaluation

2.3.1 Methodology

Protocols. To understand the design decisions of PRKS, we have comparatively studied PRKS

with its variants. Interested reader can refer [30] for detailed discussions.

In order to understand the performance of PRKS, we compare different metrics with the

following existing protocols in our evaluations:

• B-MAC: A representative protocol for CSMA/CA fasion medium access control protocols.

B-MAC utilizes carrier sensing mechanisms to tell if medium is busy or ideal. [28]

• S-MAC: A representative protocol for RTS-CTS based protocols. S-MAC uses RTS-CTS

handshake packets to negotiate packet transmitters and receivers. While this handshake
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mechanism helps in improving packet transmisison reliability, its underline interference

model is simplified, thus unable to achieve accurate co-channel interference control [33].

• RID-B: A representative protocol for TDMA-based medium access control. The underline

protocol is similar to LAMA which is used in our PRK-based scheduling. However, even

though RID-B uses physical interference model to establish interference relations between

nodes, RID-B ignores cumulative interference in networks. As a result, it still cannot achieve

accurate interference control. [16]

Network and environmental settings. We experimentally evaluate PRKS and the related pro-

tocols in ns-3.13 [3]. In simulations, we assume that nodes use the CC2420 radio which complies

with the IEEE 802.15.4 sensor network standard (e.g., in terms of physical layer techniques). In

our simulation, we have employed an analytical model proposed by [34] which gives the SINR

to PDR curve as Figure 2.7 shows. We consider networks where nodes are uniformly distributed
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Figure 2.7: SINR v.s. PDR curve in simulation

on a 2D plane, with five nodes in any square area of 100 meters by 100 meters on average. We

assume the average wireless path loss exponent is 3.3, and we use the radio-irregularity-model [35]

to reflect anisotropy and asymmetry in wireless communication. Each node transmits data packets

at the minimum power level that ensures 90% data delivery reliability to nodes 50 meters away

in the absence of interference; to enable concurrency in data transmissions, we assume that the
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network links are chosen such that each node has a receiver to whom the packet delivery reliability

is the closest to 90% in the presence of an interference power that is 2dB compared with the data

reception power at the receiver. In this context, we consider two networks in simulations: a small

network with 125 nodes distributed in an area of 500 meters by 500 meters, and a large network

with 270 nodes distributed in an area of 700 meters by 700 meters.

We assume every node transmits a data packet to its receiver every 50ms (e.g., for a sensor

sampling frequency of 200Hz). For reflecting different application scenarios, we consider the cases

when the minimum required data delivery reliability (PDR) is 70%, 80%, 90%, or 95% for all the

links and the case when the minimum required reliability for each link is randomly chosen as 70%,

80%, 90%, or 95% with equal probability.

We have experimented with other network and traffic conditions, and we have observed

similar phenomena as what we will present in Section 2.3.2; our preliminary study in the Net-

Eye [27] and Indriya [29] sensor network testbeds have also corroborated the simulation results.

Interested readers can find the detailed discussion on this in our technical report [30].

Metrics. For each combination of protocols, network, and application requirement on minimum

link reliability, we run it for 10 times and evaluate protocol performance in terms of the following

metrics:

• Packet delivery reliability (PDR): probability for a transmission along a link to be successful;

• Concurrency: number of concurrent transmissions at a time instant;

• Packet delivery delay: time taken to successfully deliver (including potential retransmis-

sions) a packet across a link.

2.3.2 Experimental results

The observations (e.g., on the relative performance of different protocols) in the small

network and the large network are similar, thus we mainly present data on the small network.
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In the discussion below, we refer to te simulation results for the small network unless explicitly

specified otherwise.

Behavior of PRKS. For different PDR requirements, Figures2.8 and 2.9 show the boxplots of

link packet delivery reliability (PDR) and PRK model parameter in PRKS respectively. We see

that PRKS adapts the PRK model parameter according to different PDR requirements, and that

the required PDR is always guaranteed in the PRKS through predictable interference control. In

particular, the PRK model parameter increases with the PDR requirement so that more close-by

nodes are prevented from transmitting concurrently with a link’s transmission. To understand the

Figure 2.8: Packet delivery reliability in PRKS

Figure 2.9: PRK model parameter in PRKS

spatial reuse in PRKS, Figure 2.10 shows the mean concurrency and its 95% confidence interval

in PRKS as well as in a state-of-the-art, centralized scheduling protocol iOrder [22] which max-

imizes channel spatial reuse in interference-oriented scheduling.2 We see that, despite its nature

of distributed control, PRKS enables a concurrency and spatial reuse close to (e.g., up to 88.92%)

2In tmers of maximizing spatial reuse, iOrder has been shown to outperform well-known existing scheduling

protocols such as Longest-Queue-First [14], GreedyPhysical [36], and LengthDiversity [37]
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what is enabled by the centralized algorithm iOrder while ensuring the required PDR at the same

time.

Figure 2.10: Mean concurrency and its 95% confidence interval in PRKS and iOrder

For the “mixed PDR requirement” scenario where different links of the same network have

different PDR requirements, Figure 2.11 and 2.12 show the boxplots of link PDR and PRK model

parameter for the links grouped by their PDR requirements. We see that PRKS adaptively ensures

the required PDR in a predictable manner even when different links of the same network have

different PDR requirements.

Figure 2.11: Packet delivery reliability in PRKS: mixed PDR requirement

Figure 2.12: PRK model parameter in PRKS: mixed PDR requirement
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Despite the distributed nature of the minimum-variance regulation controller in PRKS, the

individual controllers converge to a state where the required PDR is satisfied. For a typical link in

the network, for instance, Figure 2.13 shows the temporal behavior of link PDR when the minimum

application PDR requirement is 90%. We see that the link PDR converges to its steady state after

around 20 control steps. As a way of reflecting the network-wide convergence, Figure 2.14 shows

the temporal convergence behavior of

∑
Every link 〈S,R〉 |YS,R(t)− TS,R|

Total number of links
.

In general, link PDRs converge quickly, as shown by Figure 2.15 where the settling time is defined

Figure 2.13: Temporal behavior of link PDR

Figure 2.14: Network-wide convergence in PRKS

as the number of control steps taken for a link to reach its steady state PDR distribution. In

addition to convergence to a state where the required PDRs are satisfied, the collective behavior of
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Figure 2.15: Cumulative distribution function (CDF) for the settling time of link PDR

the distributed controllers in PRKS also enables a spatial reuse close to what is feasible with the

state-of-the-art, centralized scheduler iOrder as we have shown in Figure 2.10.

Comparison of different protocols. Figures 2.16, 2.17, 2.18 show the mean PDR, mean con-

currency, and mean delay as well as their 95% confidence intervals for PRKS and other existing

protocols. We see that, unlike PRKS that always ensures application required PDRs, existing pro-

tocols do not ensure the required PDRs due to co-channel interference that is not well controlled.

Figure 2.16: Mean PDR and its 95% confidence interval in different protocols

Figure 2.17: Mean concurrency and its 95% confidence interval in different protocols

Among existing protocols, RID-B enables higher PDRs than S-MAC and B-MAC do because RID-
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Figure 2.18: Mean delay and its 95% confidence interval in different protocols

B considers the physical interference model and application PDR requirements in defining pairwise

interference relations between nodes; nonetheless, due to its lack of consideration of cumulative

interference from multiple concurrent interferers, RID-B does not ensure predictable interference

control and thus does not ensure predictable link PDR. When the application PDR requirement is

95%, for instance, RID-B can only enable a mean PDR of 15.35%. S-MAC ensures higher PDRs

than B-MAC does due to its use of RTS-CTS handshake, but the PDRs are quite low (e.g., less

than 8.7%) in both protocols since neither protocols consider physical interference model. Due to

the low PDRs in existing protocols, the packet delivery delays are significantly larger in existing

protocols than in PRKS, even though the concurrency may be higher in existing protocols than in

PRKS.

For the large network, Figure 2.19 shows the mean PDR and its 95% confidence interval in

different protocols. We see that, same as the small network, PRKS ensures that the required PDR

is satisfied in all the cases. For B-MAC, S-MAC, and RID-B, the link PDRs are even lower in the

large network than in the smaller network, because these protocols do not deal with cumulative

interference well and there is more cumulative interference in the large network. Figure 2.20

shows the mean concurrency in PRKS. We see that PRKS also enables a concurrency close to

what is feasible with the centralized scheduler iOrder.

2.4 Related work

Besides scheduling based on the physical, protocol, and general pairwise interference mod-

els as discussed in Section 2.1, the concepts of guard-zone or exclusion-region around receivers

have also been adopted in distributed scheduling [38, 39]. But these scheduling algorithms as-
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Figure 2.19: Mean PDR and its 95% confidence interval in different protocols: large network

Figure 2.20: Mean concurrency in different protocols: large network

sumed uniform traffic load or uniform wireless signal power attenuation across the whole network,

which are unrealistic in general. They did not address the challenge of designing scheduling pro-

tocols when interfering links are beyond the communication range of one another either.

Adaptive physical carrier sensing has been proposed to enhance network throughput [40,

41], but cumulative interference is not considered. As observed by Che et al. [5], moreover,

throughput-optimal scheduling usually leads to low link reliability, which is not desirable in WSC

networks. Park et al. [42] considered link reliability when adapting carrier sensing range, but

their solution did not guarantee link reliability and converged slowly (e.g., taking up to 2 minutes).

Fu et al. [43] proposed to control carrier sensing range to ensure a certain SINR at receivers.

Nonetheless, the derivation of safe-carrier-sensing-range was based on the unrealistic assumption

of homogeneous signal power attenuation across the whole network.

Focusing on distributed control of co-channel interference based on the PRK interference

model, this work does not consider other interference management techniques such as interference

cancellation and multi-channel scheduling, and we do not consider other link-reliability control

techniques such as rate adaptation and power control. Nonetheless, we expect this work to be
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relevant in the context of these techniques too, since co-channel interference still needs to be man-

aged even with interference cancellation [44], multi-channel scheduling [45], rate control [46], and

power control [47]. We will explore this synergy in our future work. Having nodes transmit busy

tones in control channels to share their transmission or reception status has also been explored for

channel access control [48], but these work did not study the fundamental problem of identifying

interference relations between links, thus they could not ensure predictable interference control.

2.5 Concluding remarks

In this chapter, we have proposed PRKS as a scheduling algorithm to solve a reliable wire-

less communication problem in WSC systems with environmental uncertainties. Our solution has

leveraged control theory to design a minimum-variance controller to provide input for PRK model

parameter instantiation. The PRK model instantiation process itself requires every node to estab-

lish and maintain a signal map such average signal attenuations from and to neighbors are known

prior to PRK model parameter instantiation. We have implement PRKS with its comparison pro-

tocols in ns-3.13 with radio model changed to be compliant with CC2420. Extensive simulation

evaluations have shown that PRKS enables predictable link reliability and achieves high network

concurrency in normal data transmission. Besides being important by itself, the predictable link

reliability enabled by PRKS also serves as a foundation for real-time data delivery in wireless

networked sensing and control; it will be worthwhile to explore this direction of research, since

predictable reliability and real-time in data delivery are the basis of many networked cyber-physical

systems such as those in smart electric grid and smart transportation.
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CHAPTER 3: CYBER-PHYSICAL INTERFERENCE MODELING FOR

RELIABILITY OF INTER-VEHICLE COMMUNICATIONS

3.1 Introduction

Transcending the traditional paradigm of single-vehicle-oriented safety and efficiency con-

trol, next-generation vehicles are expected to cooperate with one another and with transportation

infrastructures to ensure safety, maximize fuel economy, and minimize emission as well as con-

gestion [49, 50]. One basis for this vision of networked vehicle control (e.g., active safety and

fuel economy control [50]) is wireless communication between close-by vehicles. Critical to the

optimality and safety of networked vehicle control, inter-vehicle communication is required to be

predictably reliable. Given the different impact that communication reliability, delay, and through-

put have on networked vehicle control [51, 52] and the inherent tradeoff between communication

reliability, delay, and throughput [2, 5], the optimal operation of networked vehicle systems also

requires controlling the tradeoffs between communication reliability, delay, and throughput, for

which controlling communication reliability in a predictable manner is a basis [1, 5].

Inheriting the basic design principles of WiFi such as CSMA-based channel access control,

existing IEEE 802.11p-based solutions cannot ensure predictable inter-vehicle communication re-

liability. When the load of information exchange is high, for instance, they may not even be able to

ensure a communication reliability of 30% [53, 6]. One major reason for the unpredictability and

low reliability is the lack of predictable interference control among inter-vehicle wireless com-

munications. Thus data transmission scheduling is a basic element of inter-vehicle networking.

In networked vehicle systems, dynamic control strategies introduce dynamic network traffic pat-

terns and pose different requirements on communication reliability [1, 51]. Vehicle mobility also

introduces dynamics in network topology which, together with uncertainties in wireless communi-

cation, introduces complex dynamics and uncertainties in inter-vehicle communication. For agile

adaptation to uncertainties and for avoiding information inconsistency in centralized scheduling,

distributed scheduling becomes desirable for interference control in inter-vehicle communications.



35

Despite decades of research on interference-oriented channel access scheduling, most ex-

isting literature are either based on the protocol interference model or the physical interference

model, neither of which is a good foundation for distributed interference control in the presence of

uncertainties [5, 6]. The protocol model is local and suitable for distributed protocol design, but it is

inaccurate and does not ensure reliable data delivery in general [18]. The physical model has high-

fidelity, but it is non-local and combinatorial and thus not suitable for distributed protocol design

in dynamic, uncertain settings such as those in inter-vehicle communications [5, 6]. To bridge

the gap between the existing interference models and the design of distributed, field-deployable

scheduling protocols with predictable communication reliability, Zhang et. al [5] have identified

the physical-ratio-K (PRK) interference model that integrates the protocol model’s locality with

the physical model’s high-fidelity. Based on the PRK model, Zhang et. al [6] have proposed the

PRK-based scheduling protocol PRKS which ensures predictable communication reliability in net-

works of no or low node mobility. Designed for networks of no or low mobility, however, PRKS

does not address the challenges that vehicle mobility poses to transmission scheduling. In particu-

lar, vehicle mobility makes network topology and inter-vehicle channel properties highly dynamic,

which in turn makes interference relations between vehicles highly dynamic, especially for vehi-

cles on different roads or in opposite driving directions of a same road. The highly dynamic nature

of inter-vehicle interference relations challenges the precise identification of interference relations

in terms of both control signaling and interference relation estimation. In addition, PRKS focuses

on predictable unicast reliability without considering predictable reliability in broadcast which is

a fundamental primitive in inter-vehicle communications [50].

For predictable reliability of inter-vehicle communications, we leverage cyber-physical

structures of V2V networks to address the challenges of vehicle mobility and broadcast, and make

the following contributions:

• For effective control signaling of fast-varying interference relations and leveraging the phys-

ical locations of vehicles, we propose a geometric approximation of the PRK interference

model, denoted as the gPRK model. The gPRK model enables vehicles to learn their mutual



36

interference relations in the presence of vehicle mobility and without requiring significant

signaling bandwidth.

• For accurate identification of interference relations in the presence of vehicle mobility, we

propose to leverage spatial correlations of interference, temporal link reliability bounds, and

microscopic vehicle dynamics models for the accurate instantiation, agile adaptation, and

effective use of the gPRK model in the presence of vehicle mobility respectively.

• For ensuring predictable broadcast reliability, we address the impact of broadcast on gPRK

model adaptation, and we propose a set-cover-based approach to minimizing the overhead

of control signaling.

• We propose the Cyber-Physical Scheduling (CPS) framework that integrates the above cyber-

physical interference modeling mechanisms in scheduling inter-vehicle communications.

We implement CPS in ns-3, and we evaluate CPS through integrated, high-fidelity wireless

network simulation (via ns-3) and vehicle dynamics simulation (via SUMO). We observe

that CPS ensures predictable inter-vehicle communication reliability while achieving high

throughput and low delay in communication.

The rest of the chapter is organized as follows. In Section 3.2, we present the system

model and problem specification. We present the CPS scheduling framework in Section 3.3, and

we evaluate it in Section 3.4. We discuss the related work in Section 3.5, and we make concluding

remarks in Section 3.6.

3.2 Preliminaries

The CPS framework heavily use the PRKS protocol discussed in Chapter 2. For descrip-

tions of the PRK model and details of the PRKS protocol, please refer to Chapter 2. In this section,

we focus on the system model and the problem specification of the CPS framework.

System model & problem specification. In inter-vehicle wireless communication networks, re-

ferred to as V2V networks hereafter, a fundamental communication primitive is single-hop broad-

cast via which a vehicle shares its states (e.g., location and speed) with close-by vehicles within

a certain distance (e.g., 150 meters) [50]. Given the significance of single-hop broadcast (e.g.,
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for real-time networked vehicle control [50]) and for conciseness of presentation, our discussion

in this chapter focuses on single-hop broadcast, but the proposed methodology for scheduling

inter-vehicle broadcasts applies to the scheduling of inter-vehicle single-hop unicast. Even though

we only consider single-hop broadcasts by individual vehicles, we do consider real-world settings

where the individual vehicles are widely distributed in space and may well be beyond the broadcast

range of many other vehicles.

With the above V2V network setup, we study the online slot-scheduling problem [22]

where, given a set of vehicles on the road at any time instant, a maximal subset of the vehicles

need to be scheduled in a distributed manner to transmit concurrently while ensuring that the

mean packet delivery reliability (PDR) from every transmitting vehicle S to each of its broadcast

receivers R is no less than an application-required PDR TS,R. Note that a vehicle R is a broad-

cast receiver of a transmitting vehicle S if the Euclidean distance between S and R, denoted by

D(S,R), is no more than the communication range of S, denoted by DS. Focusing on predictable

co-channel interference control in broadcast scheduling, we assume that all vehicles share a single

communication channel (e.g., the DSRC control channel [54]) and that the broadcast transmis-

sion power is fixed for each vehicle even though different vehicle may use different transmission

powers; multi-channel scheduling and broadcast power control are relegated as future research.

3.3 Cyber-Physical Interference Modeling of Inter-Vehicle Communications

In what follows, we present our mechanisms that leverage the cyber-physical structures

of V2V networks for interference modeling and predictable interference control. For conciseness

of presentation, our discussion focuses on a sender S and its receiver set R = {R : R 6= S ∧

D(S,R) < DS} unless mentioned otherwise.

3.3.1 gPRK: Geometric Approximation of the PRK Model

Challenge of using PRK model in V2V networks. As discussed in Section 2.1, the definition

of the PRK interference model is based on signal power between close-by nodes. To use the PRK

model in data transmission scheduling, nodes need to maintain local signal maps so that interfering

nodes and links can be aware of their mutual interference relations. For networks of no or low node
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mobility which Zhang et al. [6] have considered, the average signal power between nodes does not

change at timescales such as seconds, minutes, or even hours. Accordingly, the frequency of signal

map update and thus the overhead of signal map maintenance tends to be low for networks of no

or low mobility [6]. For V2V networks, however, vehicle mobility makes average signal power

between close-by vehicles fast-varying in nature, for instance, at the timescales of seconds or less.

If we were to apply the PRK interference model to V2V networks, the local signal maps between

close-by vehicles1 need to be updated frequently to ensure that vehicles are aware of their mutual

interference relations, which would introduce significant overhead. Assuming there are N close-

by vehicles that may interfere with one another, for instance, the signal map would contain, for

every vehicle vi(i = 1 . . .N), the average signal power from every other vehicle to vi. Since every

vehicle vi can only estimate the average signal power from every other vehicle to itself through

received-signal-strength-indicator (RSSI) sampling [6], it is necessary for every vehicle vi to share

its estimates with every other vehicle in order for every vehicle to establish and maintain its own

local signal map about the signal power between close-by vehicles. For instance, a receiver vehicle

R can sample and estimate the signal power PC,R from another vehicle C to itself, but R has to

shared its estimate of PC,R with C in order for C to know PC,R and thus decide whether itself can

interfere with the transmission from a sender vehicle S to R based on the PRK model. Assuming

it takes two bytes to encode the signal power from one vehicle to another and it takes six bytes to

encode the ID (e.g., MAC address) of each vehicle, it takes (6 + 8(N − 1)) bytes for a vehicle vi

to encode the signal power from every other vehicle to itself. Therefore, each update of the signal

map takes N(6+8(N−1)) bytes of information exchange between vehicles. Assuming the signal

map is updated every t0 seconds, the signal map maintenance will consume
8N(6 + 8(N − 1))

t0
bps

network bandwidth. For typical values of N in V2V networks and different update intervals t0,

Figure 3.1 shows the overhead of signal map maintenance in V2V networks. Considering that

the current physical layer of the V2V communication standard IEEE 802.11p can only support

a maximum transmission rate of 6Mbps - 27Mbps, that the total bandwidth available to a set of

1More precisely, between close-by vehicles that may interfere with one another.
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Figure 3.1: Overhead of signal map maintenance

mutually interfering vehicles is no more than the maximum transmission rate, and that N may

well be in the range of hundreds (e.g., in urban settings), Figure 3.1 shows that the signal map

maintenance overhead accounts for a significant portion or even exceed the total communication

bandwidth of V2V networks. This implies that it is too costly or even infeasible to maintain

accurate signal maps for PRK-based scheduling in V2V networks. Thus, it is difficult, if not

impossible, to directly apply the PRK interference model to data transmission scheduling in V2V

networks.

Geometric approximation of PRK model. In V2V network systems, vehicle locations are

important factors for networked vehicle control, and thus they are readily available through GPS

and/or other mechanisms such as simultaneous-localization-and-mapping (SLAM). Using vehicle

locations, it is easy for vehicles to know the distances among themselves. To avoid the significant

overhead (and sometimes infeasibility) of maintaining accurate signal maps in V2V networks and

considering the fact that, on average, closer-by vehicles tend to introduce higher interference signal

power to one another than farther away vehicles, we propose to leverage the availability of vehicle

location information to define a geometric approximation of the PRK interference model, denoted

as the gPRK interference model. In the gPRK model, interference relations among vehicles are

defined based on inter-vehicle distance instead of inter-vehicle signal power, and a vehicle C ′ is
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regarded as not interfering and thus can transmit concurrently with the transmission from another

vehicle S to its receiver R if and only if

D(C ′, R) > D(S,R)KS,R,TS,R
, (3.1)

where D(C ′, R) and D(S,R) is the geometric distance between C ′ and R and that between S

and R respectively, KS,R,TS,R
is the minimum real number (i.e., can be non-integer) chosen such

that, in the presence of cumulative interference from all concurrent transmitters, the probability

for R to successfully receive packets from S is no less than the minimum link reliability TS,R

required by applications. As shown in Figure 3.2, the gPRK model defines, for each link 〈S,R〉,

Figure 3.2: gPRK interference model

an exclusion region (ER) ES,R,TS,R
around the receiver R such that a node C is in the region (i.e.,

C ∈ ES,R,TS,R
) if and only if D(C,R) ≤ D(S,R)KS,R,TS,R

. Similar to the PRK model, the

gPRK model is local since only local, pairwise interference relations are defined between close-by

vehicles, and the gPRK model is suitable for reliable inter-vehicle communication since it ensures

the application-required link reliability by considering wireless communication properties such as

cumulative interference. Unlike the PRK model where the ER around a link may be of an irregular
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shape due to anisotropic wireless signal propagation, the ER around a link in the gPRK model is

of the regular shape of a disk.

With the gPRK model, a vehicle only needs to share its location with potentially interfer-

ing vehicles in order for an interfering vehicle to detect their mutual interference relation using

the gPRK model parameter K, and a vehicle does not need to share with other vehicles the sig-

nal power from every other potentially interfering vehicle to itself. With seven bytes, a vehicle

can encode its longitude and latitude information such that the location information accuracy is

1.11meters. Then, for the case of N mutually-interfering vehicles as discussed earlier and assum-

ing it takes six bytes to encode the ID (e.g., MAC address) of a vehicle, it takes 13N bytes of

information exchange between vehicles in order for the N vehicles to be mutually aware of one

another’s location. Assuming that the location update frequency is the same as that of signal map

update in PRK-based scheduling, using the gPRK model instead of the PRK model would reduce

the control signaling overhead by a factor of
8N(6 + 8(N − 1))

13N
=

48

13
+

64

13
(N − 1). Using loca-

tion prediction via microscopic vehicle dynamics models as we will discuss in Section 3.3.2, the

update frequency of vehicle locations can be lower than that of signal map, thus enabling more

reduction in control overhead. For highly reliable inter-vehicle communication in large scale V2V

networks, N tends to be large and in the range of hundreds. Thus the use of the gPRK model

instead of the PRK model enables orders of magnitude reduction in control signaling overhead,

which in turn makes it feasible and efficient to use the gPRK model in real-world V2V networks.

Since the ER around a receiver Ri in the gPRK model assumes a disk shape instead of a

potentially irregular geometric shape in the PRK model, as shown in Figure 3.3.

Accordingly, the set of vehicles inside the ER of Ri may be different in the gPRK and PRK

models. For links with high communication reliability requirements in large scale networks such

as V2V networks, the receiver ERs tend to be large (e.g., with a geometric radius twice the sender-

receiver distance in many scenarios [5]), and thus the number of differing vehicles in the gPRK-

and PRK-based ERs tends to be relatively small as compared to the total number of vehicles in

the ERs. For inter-vehicle broadcast, since the sender ER of a vehicle S is the union of the ERs
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Figure 3.3: gPRK- vs. PRK-based receiver ER

Figure 3.4: gPRK- vs. PRK-based sender ER
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around all of its receivers, the size of the sender ER is even larger than the size of individual

receiver ERs, and a vehicle in the interior of the sender ER that is in the PRK-based but not in the

gPRK-based ER (or in the gPRK-based but not in the PRK-based ER) of a receiver Ri may well

be in the gPRK-based ER (or the PRK-based ER) of another receiver Rj(j 6= i). Therefore, the

differences between gPRK- and PRK-based sender ERs tend to be even less significant. As shown

in Figure 3.4, for instance, vehicle C is in the PRK-based ER but not in the gPRK-based ER of

receiver R1, but C is in the gPRK-based ER of R2, thus C is in both the PRK- and gPRK-based

sender ER of S.

gPRK model adaptation. Similar to the PRK model, the parameter KS,R,TS,R
of the gPRK model

needs to be instantiated for every link 〈S,R〉 according to in-situ, potentially unpredictable net-

work and environmental conditions such as vehicle spatial distribution and wireless signal power

attenuation. To this end, we use the control-theoretic approach of Zhang et al. [6] that, upon a

feedback on the link reliability of 〈S,R〉 at time t, denoted by YS,R(t), computes the change of

cumulative interference power at the receiver R, denoted by ∆IR(t), that the change of KS,R,TS,R

at time t needs to introduce to make YS,R(t + 1) = TS,R at time t + 1. In particular, letting

y(t) = cy(t− 1) + (1− c)YS,R(t) (0 ≤ c < 1), ∆IR(t) is computed as follows [6]:

∆IR(t) =
(1 + c)y(t)− cy(t− 1)− TS,R

(1− c)a(t)
− µU(t), (3.2)

where a(t) = f ′(f−1(YS,R(t))), f(.) is the radio model function that defines the relation between

link reliability YS,R(t) and the signal-to-interference-plus-noise-ratio (SINR) at the receiver R at

time t, and µU(t) denotes the mean change of the cumulative interference power that vehicles not in

ES,R,TS,R
(t)∪ES,R,TS,R

(t+1) introduce to the receiver R from time t to t+1. Since the receiver R

can locally measure or estimate y(t), y(t− 1), a(t), and µU(t) [6], R can locally compute ∆IR(t).
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After computing ∆IR(t) at time t, R needs to compute KS,R,TS,R
(t + 1) so that






KS,R,TS,R
(t+ 1) = KS,R,TS,R

(t), if ∆IR(t) = 0

KS,R,TS,R
(t+ 1) > KS,R,TS,R

(t), if ∆IR(t) < 0

KS,R,TS,R
(t+ 1) < KS,R,TS,R

(t), if ∆IR(t) > 0

(3.3)

and that, when the PRK model parameter is min{KS,R,TS,R
(t), KS,R,TS,R

(t + 1)}, the expected

interference introduced to R by the nodes in either ES,R,TS,R
(t) or ES,R,TS,R

(t + 1) but not in both

is as close to |∆IR(t)| as possible while ensuring that the expected link reliability is no less than

TS,R when the PRK model parameter is KS,R,TS,R
(t + 1).2 To realize this, we define, for each

node C that may be included in the exclusion region of R during network operation, the expected

interference IC,R(t) that C introduces to R when C is not in the exclusion region of R. Then

IC,R(t) = βC(t)PC,R(t), where βC(t) is the probability for C to transmit data packets at time t

and PC,R(t) is the power strength of the data signals reaching R from C.3 Considering the discrete

nature of node distribution in space and the requirement on satisfying the minimum link reliability

TS,R, we propose the following rules for computing KS,R,TS,R
(t+ 1):

• Rule-ER0: If ∆IR(t) = 0, let KS,R,TS,R
(t+ 1) = KS,R,TS,R

(t).

• Rule-ER1: If ∆IR(t) < 0 (i.e., need to expand the exclusion region), let ES,R,TS,R
(t+ 1) =

ES,R,TS,R
(t), then keep adding nodes not already in ES,R,TS,R

(t + 1), in the non-decreasing

order of their distance to R, into ES,R,TS,R
(t + 1) until the node B such that adding B into

ES,R,TS,R
(t+ 1) makes

∑

C∈ES,R,TS,R
(t+1)\ES,R,TS,R

(t)

IC,R(t) ≥ |∆IR(t)| for the first time. Then

let KS,R,TS,R
(t + 1) =

D(B,R, t)

D(S,R, t)
, where D(B,R, t) and D(S,R, t) denote the distance

from B and S to R at time t respectively.

• Rule-ER2: If ∆IR(t) > 0 (i.e., need to shrink the exclusion region), let ES,R,TS,R
(t + 1) =

ES,R,TS,R
(t), then keep removing nodes out of ES,R,TS,R

(t + 1), in the non-increasing order

2Due to the discrete nature of node distribution, the resulting link reliability may be slightly higher than the required

reliability TS,R instead of being exactly equal to TS,R.
3PC,R(t) and βC(t) can be estimated through purely local coordination between R and C [6].
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of their distance to R, until the node B such that removing any more node after removing B

makes
∑

C∈ES,R,TS,R
(t)\ES,R,TS,R

(t+1)

IC,R(t) > ∆IR(t) for the first time. Then let KS,R,TS,R
(t +

1) =
D(B,R, t)

D(S,R, t)
.

(An example of gPRK model adaptation can be found at [55].) For convenience, we call the above

rule the gPRK-model-adaptation rule.

3.3.2 gPRK Modeling in the Presence of Vehicle Mobility

Vehicle mobility makes network topology and interference relations highly dynamic (es-

pecially for vehicles on different roads or in opposite driving directions of a same road), and this

challenges the initialization, adaptation, and use of the gPRK model in V2V networks. In what

follows, we elaborate on our design that addresses the challenges by effectively leveraging cyber-

physical structures of V2V networks such as the spatial interference correlation, temporal link

reliability bounds, and microscopic vehicle dynamics models.

Accurate initialization of gPRK model. Due to vehicle mobility and starting of vehicles, new

links may form when vehicles come within one another’s communication ranges. Considering the

potentially short lifetime of links (e.g., those between vehicles along opposite driving directions of

a same road), time-varying link properties, and the need for reliable inter-vehicle communication, it

is desirable for the gPRK model parameters of the newly-formed links to quickly converge to their

steady-state where application-required link reliabilities are ensured. To this end, it is desirable

to initialize the gPRK model parameters of newly formed links close to where their steady-state

may be, and we propose to leverage spatial interference correlation to accomplish this. More

specifically, in large scale wireless networks such as V2V networks, close-by links whose senders

and receivers are close to one another respectively tend to experience similar interference power

and similar set of close-by, strong interferers [56]. This spatial correlation of interference enables

us to develop mechanisms for accurate gPRK model initialization as we explain next.

When a new link from Si to Ri, denoted by 〈Si, Ri〉, is formed at time t, Ri first checks

whether there exists another sender vehicle Sj(j 6= i) for which the gPRK model parameter
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KSj ,Ri,TSj,Ri
(t) has converged to a steady state for link 〈Sj, Ri〉 (i.e., the communication relia-

bility from Sj to Ri has met the requirement TSj ,Ri
). For convenience, we call the link 〈Sj, Ri〉

a self-reference link for 〈Si, Ri〉. Let S = {Sj : 〈Sj , Ri〉 is a self-reference link for 〈Si, Ri〉}, and

let S∗ be the vehicle that is closest to Si out of all the vehicles in S. Ri then uses 〈S∗, Ri〉 to

initialize the gPRK model for 〈Si, Ri〉. More specifically, denoting the data signal power from

S∗ and Si to Ri at time t by PS∗,Ri
(t) and PSi,Ri

(t) respectively and assuming that Ri expe-

riences similar interference power when senders S∗ and Si transmit with similar communica-

tion reliability requirements, Ri sets KSi,Ri,TSi,Ri
(t) = KS∗,Ri,TS∗,Ri

(t) and computes ∆IRi
(t) =

PSi,Ri
(t)−PS∗,Ri

(t)+PSi,Ri
(t)(

1

f−1(TSi,Ri
)
− 1

f−1(TS∗,Ri
)
), where the term PSi,Ri

(t)−PS∗,Ri
(t)

accounts for the difference in tolerable interference due to different signal power from S∗ and Si,

and the term PSi,Ri
(t)(

1

f−1(TSi,Ri
)
− 1

f−1(TS∗,Ri
)
) accounts for the change in tolerable interfer-

ence when the communication reliability requirement by 〈Si, Ri〉 changes from TS∗,Ri
to TSi,Ri

;

then Ri applies the gPRK model adaptation rule Rule-ER0, Rule-ER1, or Rule-ER2 (as discussed

in Section 3.3.1) to adjust the value of KSi,Ri,TSi,Ri
(t), and the final value of KSi,Ri,TSi,Ri

(t) is set

as the initial gPRK model parameter for the newly formed link 〈Si, Ri〉.

If there exists no self-reference link for 〈Si, Ri〉 when it newly forms (e.g., when vehicle

Ri just got started), Ri tries to identify a neighbor-reference link 〈Sj, Rj〉(j 6= i) such that the

gPRK model parameter KSj ,Rj ,TSj,Rj
(t) has converged to a steady state, and D(Sj, Si, t) as well

as D(Rj , Ri, t) are less than a threshold D0, where D0 is chosen such that links 〈Sj, Rj〉 and

〈Si, Ri〉 experience similar interference power and close-by, strong interferers, and D(Vj, Vi, t)

denotes the geometric distance between two vehicles Vj and Vi at time t. Let L = {〈Sj, Rj〉 :

〈Sj, Rj〉 is a neighbor-reference link for 〈Si, Ri〉}, define the distance between two links 〈Sj, Rj〉

and 〈Si, Ri〉 at time t as max{D(Sj, Si, t), D(Rj, Ri, t)}, and let 〈S∗, R∗〉 be the link closest to

〈Si, Ri〉 among all the links in L. Ri then uses 〈S∗, R∗〉 to initialize the gPRK model for 〈Si, Ri〉

as in the case of estimation via self-reference links as discussed above.

Leveraging the spatial correlation between 〈Si, Ri〉 and its self-reference and neighbor-

reference links, the above gPRK model initialization mechanism enables good approximation of
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the steady-state gPRK model parameter of 〈Si, Ri〉 in normal and heavy vehicle traffic settings

where there are usually enough number of surrounding vehicles/links around 〈Si, Ri〉. In the case

of very light vehicle traffic settings (e.g., at 3 a.m.), there may exist no self-reference link nor

neighbor-reference link for a newly formed link 〈Si, Ri〉. In this case, vehicles are sparsely dis-

tributed, cumulative interference from far-away vehicles tends to be small, and the exclusion region

(ER) tends to be smaller than in the case of normal and heavy vehicle traffic settings. Accordingly,

Ri can approximate its steady-state gPRK model parameter by only considering pairwise inter-

ference among close-by vehicles. More precisely, Ri sets the initial value of the gPRK model

parameter such that the initial ER around itself includes every vehicle whose transmission alone,

concurrent with the transmission from Si to Ri, can make the communication reliability drop below

TSi,Ri
.

Agile adaptation of gPRK model. As network topology and link properties vary over time (e.g.,

due to vehicle mobility), the gPRK model parameters need to be adapted accordingly. As we have

discussed in Section 3.3.1, the gPRK model adaptation for a link 〈S,R〉 is triggered by each new

feedback of the latest link reliability YS,R(t). For accurate feedback of in-situ link reliability and

to circumvent uncertainties in the radio model function f(.) [57], it is desirable to measure the

delivery status (i.e., success or failure) of a sequence of W data packet transmissions from S to R

to get one link reliability feedback. In a measurement window of W packet transmissions, if there

are U number of successful packet deliveries, the feedback YS,R(t) is computed as
U

W
. Given a

link reliability requirement TS,R, W needs to be no less than W0 = ⌈ 1

1− TS,R

⌉ in order for R to

decide whether the actual link reliability exceeds TS,R. To ensure a feedback accuracy of ±r% at

a confidence level of 100(1 − α)% when the expected link reliability is p, W needs to be no less

than W1 = z21−α/2

p(1− p)

r2
[58], where z1−α/2 is the (1−α/2)-quantile of a unit Gaussian variate.

Therefore, W = max{W0,W1}. For V2V networks requiring high communication reliability (e.g.,

TS,R = 95%), W tends to be in the range of tens of packet transmissions (e.g., no less than 20).

For V2V networks with potentially fast-varying link properties (e.g., between vehicles moving in

opposite directions of a same road), the gPRK model adaptation might well be too slow if a link
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had to always wait for W packet transmissions to get a link reliability feedback, and the slow

adaptation may well lead to low communication reliability in fast-varying network settings. To

ensure communication reliability, we propose mechanisms that leverage temporal link reliability

bounds to enable early detection of low link reliability and thus agile adaptation of gPRK model

parameters as we explain next.

While it takes at least W0 number of packet transmissions to detect the case of actual

link reliability exceeding the required one TS,R, it usually takes significantly fewer number of

packet transmissions to detect the case of actual link reliability being lower than TS,R. More

specifically, at a time instant tf when there already have F0 = ⌊(1−TS,R)W ⌋+1 number of packet

delivery failures since the last link reliability feedback, the receiver R knows already that the link

reliability sample in this feedback window will be less than TS,R. Since the number of successful

transmissions in this feedback window will be no more than W−F0, the link reliability sample will

be no more than
W − F0

W
. At time tf , R could treat

W − F0

W
as an upper bound of YS,R(tf) and

apply Formula (3.2) to compute ∆IR(tf ) and expand its exclusion region. Considering temporal

link correlation and the packet delivery failure at tf , however, R may expect a few more packet

delivery failures immediately after time tf , and R could get a tighter upper bound on the in-situ

link reliability if it waits to collect a few more samples of packet delivery status. In order not to

slow down necessary gPRK model adaptations while trying to get tight upper bound on in-situ

link reliability, R continues, after time tf , sampling packet delivery status until a time instant t′f

when the packet delivery is a success, |∆IR(t
′
f)| is large enough so that additional transmission

failures in this feedback window will only lead to negligible additional expansion of the exclusion

region, or R has already collected W number of transmission status samples, where |∆IR(t
′
f)|

is computed by conservatively assuming that YS,R(t
′
f ) =

W − F1

W
with F1 being the number of

transmission failures since the last link reliability feedback. With the above approach to early
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detection of low link reliability, 〈S,R〉 adapts its gPRK model parameter in an agile manner to

ensure application-required communication reliability in the presence of vehicle mobility.

Effective use of gPRK model. In order for vehicles to use the gPRK model to detect their mutual

interference relations in a distributed manner, close-by, potentially interfering vehicles need to be

aware of one another’s locations. A vehicle can update and share its location with close-by vehicles

by broadcasting its location periodically. In the presence of high vehicle mobility, however, the

relative positions of two vehicle may change in an non-negligible manner during the broadcast

intervals. For instance, even if the location information is updated every half a second, the distance

between two vehicles driving at a speed of 80km/h (i.e., 50mph) along the opposite directions of

a road may change 22.22 meters during the update interval. In order for vehicles to have accurate

information about one another’s locations during update intervals and with limited location update

frequencies, we propose to have vehicles estimate one another’s locations during update intervals.

For accurate estimation of vehicle locations, it is important to have a good model for vehicle

location dynamics.

Fortunately, vehicle dynamics have been studied extensively in traffic flow theory, and the

intelligent-driver-model (IDM) as well as its extensions have been shown to be able to accurately

model microscopic vehicle traffic flow dynamics [59]. A key part of the models is the model on

vehicle acceleration behavior according to the speed and locations of a vehicle and its surrounding

vehicles. In this study, we use an enhanced version of IDM which captures precisely the behavior

of adaptive cruise control (ACC). In the model, the vehicle acceleration function aACC is defined

by (3.4) below [59]:

aACC(s, v, vl, v̇l) =





aIIDM , if aIIDM ≥ aCAH

(1− c)aIIDM + c[aCAH+ otherwise

btanh(
aIIDM − aCAH

b
)],

(3.4)
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where c ∈ [0, 1] and is usually set as 0.99,

aCAH(s, v, vl, v̇l) =





v2ãl

v2l − 2sãl
, if vl(v − vl) ≤ −2sãl

ãl −
(v − vl)

2Iv−vl≥0

2s
, otherwise

(3.5)

aIIDM =





a(1− z2), if v ≤ v0, z =
s∗(v, v − v0)

s
≥ 1

afree(1− z(2a)/afree ), if v ≤ v0, z < 1

afree + a(1 − z2), if v > v0, z ≥ 1

afree, if v > v0, z < 1

(3.6)

afree(v) =





a[1− (
v

v0
)δ ], if v ≤ v0

−b[1− (
v

v0
)aδ/b], otherwise

(3.7)

s∗(v, v − v0) = s0 +max(0, vT +
v(v − vl)

2
√
ab

). (3.8)

In the above equations, v and vl represent the speed of the modeled vehicle and its lead vehicle

(i.e., the vehicle immediately preceding the vehicle considered) respectively, s is the rear-bumper-

to-front-bumper distance from the lead vehicle to the vehicle, v̇l is the acceleration of the lead

vehicle, and the effective acceleration of the lead vehicle used in modeling is ãl = min(v̇l, a). In

the above model, the parameters v0, T, s0, δ, a, and b represent the desired speed, time gap between

the vehicle and its lead vehicle, minimum space gap between the vehicle and its lead vehicle,

acceleration exponent, maximum acceleration, and comfortable deceleration respectively [59].

Using the above model and by treating the speed, location, and bumper-to-bumper distance

to its lead vehicle as the “state” of a vehicle, we can derive the dynamic model of the vehicle. Given

that the model is nonlinear, we use the Unscented Kalman Filter (UKF) [60] to estimate vehicle

locations. By treating the model parameters as a part of the system state and introducing random

walks to the parameter evolution [60], the microscopic model can also be adapted according to the

individual driving behavior of vehicles. Besides vehicle location estimation, the above approach to
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vehicle location estimation can be applied to a vehicle itself to filter out GPS location measurement

errors for improved GPS localization accuracy.

The IDM model focuses on the longitudinal movement of a vehicle along a specific lane,

and it does not directly model behavior such as lane change and turn. Since it is more difficult

to model those behavior accurately [59], we propose, for effectiveness of real-world deployment,

not to explicitly model those behavior and resort to event-based quick diffusion of vehicle state to

address the impact of lane change and turn; that is, a vehicle immediately shares its new location

right after it changes lane or turns. Together, these mechanisms enable vehicles to be aware of one

another’s locations, thus enabling the effective use of the gPRK model in V2V networks.

3.3.3 gPRK Modeling of Broadcast Interference Relations

Sender ER for reliable broadcast. A fundamental communication primitive in V2V networks is

single-hop broadcast via which a vehicle shares its state (e.g., location and speed) with close-by ve-

hicles within a certain distance [50]. Reliable broadcast is a well-known challenge because, even

though acknowledgments from receivers are required for many reliability-enhancement mecha-

nisms such as ACK-/negative-ACK-based retransmission of lost packets and RTS-CTS-based col-

lision avoidance in medium access control, it is difficult for a sender to reliably and efficiently get

an acknowledgment from every receiver, especially when the number of receivers is large in V2V

networks (e.g., up to hundreds).

To address the challenge, we observe that, to ensure a minimum broadcast reliability TS

for a sender S, we need to make sure that the communication reliability along the link from S to

every one of its receiver Ri ∈ R is at least TS . This fact enables us to define, for a broadcast

sender S, a receiver exclusion region (ER) ES,Ri,TS
for every receiver Ri ∈ R based on the gPRK

model. Accordingly, we define the sender ER for S, denoted by ES,TS
, as the union of the its

corresponding receiver ERs; that is, ES,TS
= ∪Ri∈RES,Ri,TS

. For instance, Figure 3.5 shows an

example of the sender ER when the sender S has four receivers R1, R2, R3 and R4. Based on the
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Figure 3.5: Sender ER

definition of the sender ER, the broadcast reliability of TS is ensured as long as no node in ES,TS

transmit concurrently with sender S.

Broadcast receiver ER adaptation. For reliable inter-vehicle broadcast, a vehicle C in the

sender ER of another vehicle S shall not transmit concurrently with S. Given that the sender ER

of a vehicle S is the union of the receiver ERs of S’s receivers, a vehicle C may lie in the receiver

ER of multiple receivers; that is, the receiver ERs of two receivers Ri and Rj (i 6= j) may overlap

and share some common vehicles. The overlap of receiver ERs and the fact that the sender ER is

the union of all receiver ERs makes the unicast-oriented receiver ER instantiation rule presented

in Section 3.3.1 not directly applicable to broadcast. In particular, after a receiver Ri computes

∆IRi
(t) at time t and if ∆IRi

(t) 6= 0, Ri needs to consider whether a vehicle C lies in the receiver

ER of another receiver Rj(j 6= i) when deciding to add or remove C from the receiver ER of Ri

itself.

When ∆IRi
(t) < 0 (i.e., Ri needs to expand its receiver ER), the receiver ER expansion

rule Rule-ER1 needs to be amended with the following rule:

Rule-BC1: If a vehicle C is not in the receiver ER of Ri but is in the receiver ER of another

receiver Rj(j 6= i) at time t (i.e., C ∈ ES,Rj ,TS
(t) \ ES,Ri,TS

(t)), Ri treats IC,Ri
(t) as zero.
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The rationale for Rule-BC1 is that, if C is already in the receiver ER of another receiver Rj , C is

already in the sender ER of S and does not transmit concurrently with the broadcast transmission

by S, and thus C does not introduce any interference to the receiver Ri and its effective interference

power to Ri (i.e., IC,Ri
(t) is zero.

When ∆IRi
(t) > 0 (i.e., Ri needs to shrink its receiver ER), the receiver ER shrinking

rule Rule-ER2 needs to be amended with Rule-BC1 for the same rationale as discussed above.

However, if the receiver ER of Ri is completely covered by other receivers’ ERs at time t (i.e.,

ES,TS
(t) = ES,TS

(t)\ES,Ri,TS
(t)) or if applying Rule-ER2 and Rule-BC1 at time t would make the

receiver ER of Ri completely covered by other receivers’ ERs, Rule-ER2 and Rule-BC1 cannot be

directly applied since applying these rules will lead to an empty receiver ER for Ri. In this case,

we regard Ri as an unconstrained receiver of S at time t since the sender ER of S will only depend

on the receiver ERs of those receivers other than Ri. Accordingly, we regard a receiver Rj as a

constrained receiver of S at time t if Rj is not an unconstrained receiver. For an unconstrained

receiver Ri at time t, its receiver ER does not impact the sender ER ES,TS
(t) at time t, thus we

could arbitrarily set its ER if we do not consider network dynamics such as vehicle mobility.

Due to network dynamics such as vehicle mobility, however, a vehicle Rj whose receiver ER

covers that of Ri at time t may move such that Rj’s receiver ER does not cover that of Ri at time

t + k (k ≥ 1). To address the impact of network dynamics, we propose the following rule of

adapting the receiver ER of an unconstrained receiver Ri so that the communication reliability

from S to Ri is still ensured at time t+ 1 even if network dynamics (e.g., vehicle mobility) makes

none of other receiver’s ERs cover Ri’s receiver ER at time t + 1. (Note that, for a constrained

receiver Rj with ∆IRj
(t) > 0, Rule-ER2 and Rule-BC1 apply.)

Rule-BC2:

(A) If ∆IRi
(t) > 0, Ri is an unconstrained receiver of S, and the receiver ER of Ri is com-

pletely covered by other receivers’ ERs at time t (i.e., ES,TS
(t) = ES,TS

(t) \ ES,Ri,TS
(t)), Ri

expands its receiver ER to the largest possible that is still completely covered by other re-
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ceivers’ ERs (i.e., sets KS,Ri,TS
(t) to the largest value that still ensures ES,TS

(t) = ES,TS
(t) \

ES,Ri,TS
(t)), and then Ri applies Rule-ER2 (but not Rule-BC1) to shrink its receiver ER.

(B) If ∆IRi
(t) > 0, Ri is an unconstrained receiver of S, and ES,TS

(t) 6= ES,TS
(t) \

ES,Ri,TS
(t), Ri first lets E0 = ES,Ri,TS,R

(t), then keeps removing nodes out of ES,Ri,TS,R
(t),

in the non-increasing order of their distance to R, until the condition ES,TS
(t) = ES,TS

(t) \

ES,Ri,TS
(t) holds for the first time. Then Ri sets∆IRi

(t) as ∆IRi
(t)−

∑

C∈E0\ES,Ri,TS,R
(t)

IC,R(t),

where IC,R(t) is computed in conformance with Rule-BC1. Then Ri applies Rule-ER2 (but

not Rule-BC1) to shrink its receiver ER.

In Rule-BC2(A), the reason why Ri first expands its receiver ER to the largest possible

that is still completely covered by other receivers’ ERs is to make sure that, before applying Rule-

ER2, the value of ES,R,TS,R
(t) corresponds to the network setting from which the value of ∆IRi

(t)

is derived while assuming that no other receiver ER covered the receiver ER of Ri. With Rule-

BC2, the communication reliability from S to Ri is ensured even if no other receiver’s ER covers

the receiver ER of Ri at time t + 1. This property is important for V2V networks with high

vehicle mobility. A special case is when a vehicle Rj(j 6= i) at the boundary of the broadcast

communication range of S moves outside the communication range of S while Ri is the the next

vehicle closest to the boundary of S’s communication range, as shown in Figure 3.6. In this case,

Ri’s receiver ER is covered by that of Rj , and a significant portion of S’s sender ER is also covered

by Rj’s receiver ER.4 By having Ri set its receiver ER assuming that it is not covered by that of

Rj , the communication reliability from S to Ri and the fast convergence of the sender ER of S are

ensured when Rj moves outside the communication range of S.

Lightweight signaling of sender ER. Two vehicles Si and Sj (i 6= j) interfere with each other

and thus cannot transmit concurrently if Si ∈ ESj ,TSj
and/or Sj ∈ ESi,TSi

, where TSi
and TSj

are

the broadcast reliability requirements by Si and Sj respectively. In order for vehicles to know the

mutual interference relations among themselves, each vehicle S needs to share its sender ER ES,TS

with potentially interfering vehicles. Since the sender ER is the union of all receiver ERs and the

4For clarity of Figure 3.6, the figure does not show other receivers of S nor their ERs.
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Figure 3.6: Benefit of Rule-BC2

number of broadcast receivers may be large (e.g., up to hundreds), the overhead for a sender to

signal its sender ER with potentially interfering vehicles will be high if we represent the sender

ER by listing all the receiver ERs individually. High signaling overhead not only reduces effective

network capacity, it also makes it difficult for vehicles to share their sender ERs in a timely manner

and to be accurately aware of their mutual interference relations. To address the challenge, we

observe that, for a given sender S, its receiver ERs tend to overlap with one another, especially in

heavy vehicle traffic settings. To minimize signaling overhead, S needs to minimize the number

of receiver ERs it signals. By treating each receiver ER as the set of vehicles inside the ER, the

minimum signaling overhead problem can be formulated as a minimum-set-cover (MSC) problem

where the sender S needs to select a minimum number of receiver ERs such that the selected

receiver ERs cover all the vehicles that are in the sender ER. More formally, given a sender S and
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its receivers R(t) at time t, the problem can be formulated as follows:

Problem PMSC

minimize |R′(t)|

subject to R
′(t) ⊆ R(t)

∪Ri∈R′(t)ES,Ri,TS
(t) = ∪Ri∈R(t)ES,Ri,TS

(t)

(3.9)

It is well-known that the MSC problem is NP-hard [61], thus we use the following simple, greedy

algorithm to solve problem PMSC:

• Denote the optimal solution to be R
∗(t), and initialize R∗(t) to be ∅;

• Iteratively add receivers to R
∗(t) until ∪Ri∈R∗(t)ES,Ri,TS

(t) = ∪Ri∈R(t)ES,Ri,TS
(t); at each

step of the iterative process, choose the receiver whose receiver ER contains the largest

number of uncovered vehicles.

The time complexity of the above algorithm is O(|R(t)|| ∪Ri∈R(t) ES,Ri,TS
(t)|). Accord-

ing to Chvatal [61], the above greedy algorithm achieves an approximation ratio no larger than

ln(|∪Ri∈R(t)ES,Ri,TS
(t)|)+1, which tends to be small. Our experimental results in Section 3.4 show

that the median and maximum reduction in signaling overhead as a result of the set-cover-based

approach is up to 75% and 97.37% respectively. Therefore, the above set-cover-based approach

enables lightweight signaling of sender ER in a timely manner.

3.3.4 CPS: Putting Things Together

Using the mechanisms presented in Sections 3.3.1, 3.3.2, and 3.3.3, vehicles identify the

mutual interference relations among themselves in an agile, distributed manner. Based on the mu-

tual interference relations among vehicles, inter-vehicle communications are scheduled in a TDMA

manner as in PRKS [6]. In particular, time is divided into time slots, and, at each time slot, a max-

imal set of mutually non-interfering vehicles are scheduled to transmit according to the optimal-

node-activation-multiple-access (ONAMA) algorithm [62]. To enable the TDMA scheduling via

the ONAMA algorithm, control signaling packets (e.g., those containing gPRK model parameters,

vehicle locations, and/or sender ERs) and data packets are transmitted in the control channel and
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data channel respectively, where the control channel and data channel can be separated in frequency

or in time and the transmissions of control signaling packets in the control channel are coordinated

in a CSMA/CA manner [6]. Data packets can also be used to piggyback certain control information

such as gPRK model parameters and vehicle locations. From each vehicle’s perspective, it quickly

identifies close-by vehicles, initializes related gPRK model parameters, and identifies mutual in-

terference relations with close-by vehicles immediately after it starts; then, in parallel with data

transmissions, the vehicle adapts its gPRK model parameters and thus data transmission schedules

accordingly. Figure 3.7 shows the interactions and timescales of the major functional components

Figure 3.7: A vehicle’s perspective of the cyber-physical-scheduling (CPS) framework

at each vehicle. For convenience, we call the above framework of scheduling inter-vehicle com-

munications cyber-physical scheduling (CPS) since at its core lies our cyber-physical approach to

identifying inter-vehicle interference relations for predictable communication reliability.

3.4 Experimental Evaluation

Due to the lack of large-scale field-deployed public V2V network testbeds for evaluating

link layer scheduling algorithms, we implement our CPS scheduling framework in the ns-3 [3]

network simulator, and we evaluate the behavior of CPS by integrating ns-3-based wireless network

simulation with SUMO-based vehicle dynamics simulation [63].
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3.4.1 Methodology

Multi-dimensional high-fidelity simulation and its implementation. High-fidelity simulation

of V2V networks requires high-fidelity simulation of V2V wireless channels and vehicle mobility

dynamics. For V2V wireless channels, we implement in ns-3 a channel model based on real-world

measurement data that capture both large-scale path loss and small-scale fading [64]. For vehicle

mobility dynamics, we use the SUMO simulator that simulates microscopic vehicle traffic flow

dynamics at high-fidelity [63]. For integrated, high-fidelity simulation of V2V wireless channels

and vehicle mobility, we integrate SUMO simulation with ns-3 simulation through the traffic con-

trol interface (TraCI) of SUMO, as shown in Figure 3.8. With the TraCI interface, ns-3 can query

any desired information (e.g., locations of individual vehicles) from SUMO anytime. When a sim-

ulation starts, ns-3 first invokes SUMO with its local configuration files, as shown via link a of

Figure 3.8; during a ns-3 simulation, ns-3 continuously queries vehicle state information (e.g., lo-

Figure 3.8: Integration of SUMO with ns-3

cations) from SUMO, as shown via link b of Figure 3.8). (Via TraCI, ns-3 can also send commands

to SUMO to control vehicle movement, but we do not use this feature in this study.)

To make our simulation of high-fidelity, the first step is to replace the default SINR-PDR

curve ns-3 has for its wifi module. We use ns-3.13 to implement our protocols and revise its wifi

module for vehicular networks. In ns-3.13, whether packet receptions are successful or not is de-

cided in file src/wifi/model/interference-helper.cc which defines a class called ‘InterferenceHelper‘.

This class is responsible to calculate SINR at any given instant while a network node is receiving

a packet. The first change is to extract SINR values during a packet reception and apply a different

packet error rate (PER) that represents settings in vehicular networks. We borrow the measurement
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results from [65] and Figure 3.9 shows the resulting SINR-PDR curve we use for packet decoding.

In our experiments, we use a packet length of 1500 Byte.
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Figure 3.9: Urban network

With SINR-PDR curve revised, we then change the default signal propagation model in

ns-3.13. The channel model we use is proposed in [64], and Figure 3.10 shows the channel model

we use. As we can see from the figure, the default channel model used in ns-3.13 is quite dif-

ferent from the curve deduced from measurement results. Signal propagation loss is calculated in

src/propagation/model/propagation-loss-model.cc. We modify signal propagation loss algorithm

for ‘LogDistancePropagationLossModel‘ which we then configure for signal propagation loss cal-

culation.

Since the 802.11 Wi-Fi stack by default uses CSMA. Our CPS uses TDMA instead. Thus,

we also disable ns-3.13’s default CSMA procedure. The crucial method we need to disable is a

method called ‘StartAccessIfNeeded‘ defined in src/wifi/model/dca-txop.cc. Without this method,

the entire CSMA process is disabled. For TDMA implementation, we can use the schedule utility

functions to schedule time sensitive events, for instance, packet transmission or reception.

Protocols. To demonstrate the benefits of CPS in scheduling inter-vehicle communications, we

comparatively study the following representative V2V network protocols:
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Figure 3.10: Urban network

• 802.11p: the MAC protocol of the IEEE 802.11p standard which uses CSMA/CA to coordi-

nate channel access and interference control [53]. This is the MAC protocol used in existing

field deployments of DSRC implementations (e.g., those by the USDOT).

• DCC: an ETSI standard that uses congestion, power, and rate control on top of the IEEE

802.11p protocol to mitigate inter-vehicle interference and improve communication reliabil-

ity [66].

• AMAC: the ADHOC MAC protocol [67] which is a slot-reservation-based TDMA protocol

based on the protocol interference model. In the protocol, vehicles transmit in their reserved

slots without carrier sensing. If collisions are detected in a certain time slot of the TDMA

frame, vehicles will release the slot and reserve another slot .

• VDDCP: a TDMA-based MAC protocol [68] that, based on the protocol interference model,

first allocates non-overlapping sets of time slots to different roads and then let vehicles

on each road compete for channel access in a slot-reservation-based TDMA manner as in

AMAC.

To understand the effectiveness of the geometric approximation of the PRK model by the

gPRK model, we also study a variant of CPS, denoted as OCPS (for Oracle CPS), that is the same
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as CPS except for its use of the PRK model. In OCPS, we assume that after a vehicle R has a

new estimation for the signal power PC,R from another vehicle C to itself, the newly estimated

PC,R is known to every other potentially interfering vehicle through some oracle without requiring

any control signaling packet exchange as we have discussed in Section 3.3.1; this way, the costly

and sometimes infeasible signal-map-related control signaling overhead is gone, and OCPS can be

executed in our simulation environment.

Network and traffic settings. For understanding protocol behavior in different V2V network

settings, we consider two networks: an urban network consisting of vehicles in midtown Detroit,

and a freeway network consisting of vehicles on I-75 north to midtown Detroit.

Figure 3.11: Urban network

As shown in Figure 3.11, the urban network consists of freeway I-75 and city roads in

midtown Detroit, and it spans an area of ∼ 3km × 3km. In the urban network, vehicle speed

ranges from 40km/h (i.e., 25mph) on small city streets to 120km/h (i.e., 75mph) on I-75. As

shown in Figure 3.12, the freeway network consists of vehicles moving at a speed of ∼120km/h

along opposite directions of I-75, and it spans an I-75 road segment of length 3.5km. We use

the freeway network to understand protocol behavior in fast-varying network settings. Our study

considers normal vehicle traffic flow conditions; the average bumper-to-bumper distance in the
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Figure 3.12: Freeway network

urban network ranges from ∼1 meter to ∼20 meters, and the average bumper-to-bumper distance

in the freeway network is ∼20 meters.

We set the desired broadcast communication range as 150 meters and the desired broadcast

reliability as 95%. For protocols that do not use transmission power and rate control (i.e., protocols

other than DCC), the transmission power to set at a value that ensures that the signal-to-noise ratio

(SNR) in the absence of interference is 6dB above the SNR for ensuring 95% communication reli-

ability for links of length 150 meters, and the transmission rate is set as 6Mbps. For understanding

supportable network throughput while satisfying the broadcast reliability requirement, we consider

the saturated broadcast transmission scenario where every vehicle always has packets to transmit

and the size of each data packet is 1,500 bytes.

3.4.2 Experimental Results

Urban network. For the urban network, Figure 3.17 shows the boxplot of communication relia-

bility from each vehicle to its receivers, Figure 3.18 shows the number of concurrent transmissions

in the network, Figure 3.19 shows the network throughput that is computed as the number of pack-
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ets successfully delivered to receivers in every time-slot duration (i.e., 5ms), and Figure 3.20 shows

the packet delivery delay when packet retransmission is used to ensure the application-required re-

liability for protocols that would be unable to ensure the application-required reliability otherwise

(i.e., protocols other than CPS).

Enabling accurate, agile identification of interference relations among vehicles, our gPRK-

based cyber-physical approach to interference modeling and transmission scheduling ensures pre-

dictable interference control and application-required broadcast reliability, as shown in Figure 3.17.

Implicitly assuming a protocol interference model and using a contention-based approach to medium

access control, 802.11p and DCC do not ensure predictable control of interference and thus do not

ensure application-required communication reliability. Through congestion, power, and rate con-

trol, DCC improves the reliability of 802.11p, but the broadcast reliability is still quite low in

DCC (i.e., being ∼6% in our study). Assuming an inaccurate protocol interference model and

unable to address the challenge of high vehicle mobility to TDMA scheduling, the TDMA proto-

cols AMAC and VDDCP cannot ensure predictable interference control, and the communication

reliability from senders to receivers tend to be quite unpredictable, ranging from very low to very

high and varying over time. In AMAC and VDDCP, the slot reservation tends to be unreliable

in the presence of vehicle mobility and inter-vehicle interference, thus the concurrency in AMAC

and VDDCP tends to be quite low too, as shown in Figure 3.18. The fact that the reliability is

unpredictable while the concurrency is low in AMAC and VDDCP demonstrates the importance

of accurately identifying inter-vehicle interference relations in an agile manner in the presence of

vehicle mobility, as is accomplished in our CPS framework.

The concurrency in 802.11p and DCC is the highest among all the protocols, but their

throughput is quite low due to the low communication reliability in both protocols, as shown in

Figures 3.19 and 3.17. Due to the low concurrency and the unpredictable, often-low commu-

nication reliability in AMAC and VDDCP, the throughput is low in both protocols. Ensuring

application-required reliability while maximizing channel spatial reuse, CPS enables significantly

higher throughput than other protocols do.



64

To improve communication reliability, retransmission is needed in other protocols, which

significantly increases the communication delay, as shown in Figure 3.20. The low concurrency

and the unpredictable communication reliability in AMAC and VDDCP make their communication

delay the largest among all the protocols.

Freeway network. For the freeway network, Figures 3.13, 3.14, 3.15, and 3.16 show the relia-

bility, concurrency, throughput, and delay in different protocols. The overall behavior of different

protocols are similar to those in the urban network. CPS ensures predictable communication re-

liability in the presence of high vehicle mobility, while the communication reliability tends to be

unpredictable and often-low in other protocols. The predictable communication reliability in CPS

also enables high network throughput and low communication delay.
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Figure 3.13: Reliability: freeway

Effectiveness of Set-Cover-Based Approach to Minimum Overhead Control Signaling. We

have presented the set-cover-based approach to minimum overhead signaling of sender ERs in Sec-

tion 3.3.3. For the urban network and freeway network discussed in Section 3.4, Figure 3.21 shows

the empirical cumulative-distribution-function (CDF) of the percentage of overhead reduction in

signaling sender ERs as a result of the set-cover-based approach to selecting the minimum number

of receiver ERs to signal. We see that the overhead reduction is significant, with the median and

maximum reduction up to 75% and 97.37% respectively. In addition, the overhead reduction is
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also more significant in networks of denser vehicle spatial distribution (e.g., in the urban network),

where such savings in control signaling overhead are also more critical.

∆IU(·) analysis For experimental study scenarios, we inspect the details of ∆IU(·) which denotes

the changes of interference from beyond a link’s exclusion region. As Figure 3.22 shows, the

changes of ∆IU(·) falls in an interval that contains zero. Furthermore, Figure 3.23 shows ∆IU(·)

of a typical link in a stable vehicle cluster in a traffic flow. Our detailed analysis shows that the

mean of ∆IU (·) is 0.3528dB, and its 95% confidence interval is [-0.0261dB, 0.7318dB]. Thus the

mean of ∆IU(·) is statistically equal to 0dB at the 95% confidence interval.
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Figure 3.23: Time series of ∆IU(.)

Location tracking with GPS errors To understand how the CPS framework can adapt with

vehicle mobility, we collect data to show neighbor vehicle location update intervals and neighbor

vehicle location track errors. For location tracking error, we first collect the ground truth location

for each vehicle, then every vehicle also reports its location tracking error whenever it receives

location updates form neighbors.
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Figure 3.25: Neighbor location update intervals

Note that ground truth locations have 4-8 meters of inaccuracy due to imperfect GPS loca-

tion service. Figure 3.24 shows a CDF of location tracking errors reported by all vehicles in our

evaluation scenario. As we can see, location tracking error are mostly smaller than 30 meters. To

overcome such errors and utilize history states of individual links, we have selected 30 meters as

a distance buffer. Thus, link state data get persisted as long as the length of a link is smaller than

d0 + 30 in our evaluation.

We also have figure 3.25 to show a CDF of location update intervals reported by all vehicles

in our test scenario. As the figure shows, the intervals are generally small.

Controller adaptation interval Figure 3.26 shows the CDF of controller adaptation interval in

terms of seconds for each link. Even though, we consider broadcast, we still view broadcast sender

and each of its receiver as a link. We see that almost all controller adaptation happens within 15

seconds. With more than 70% of consecutive controller adaptation happens within in 10 seconds.
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Figure 3.26: Controller adaptation interval

This time frame could be too long for transient links in different traffic flow, especially in freeways,

but it’s good enough for vehicles within the same traffic flow.

Different PDR requirements In Figure 3.27, we show the ranged PDR comparison in CPS. We

define ranged PDR as follows: 1) We divide link distance into five groups. Each group can have

30 meters. Thus, we have links with sender receiver distance 0-30 meters as one group, 30-60

meters as another group, etc, until 120-150 meters as a group. In our evaluation, the maximum
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Figure 3.27: Mean ranged PDR comparison in CPS

link distance we consider is 150 meters. 2) Node mobility may cause link distance to change,

as long as link distance of a link changes within the same group, we consider number of packets

transmitted as a group of samples, and calculate the ratio of packets that are received by receivers.
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In Figure 3.27, we show link average reliability in bar graph. we notice that when link distance is

small, link reliability is generally better than that of links with longer distance. The group we pay

special attention is the distance group 120-150 meters. In this group, we see a clear trend of PDR

increase as application required reliability increases. There are still links whose average reliability

is lower than application requirements as we will show data in Chapter 4.

Concurrency comparison with iOrder In Figure 3.28, we show concurrency comparison with

iOrder when link reliability is 70%, 80%, 90%, and 95%. We define concurrency as the number

of simultaneous transmitters in a time slot. The figure shows the mean concurrency collected in

CPS and calculated in iOrder. We extended iOrder to a broadcast communication paradigm in our

evaluation and added the channel model we used in ns-3 in our revised iOrder implementation.

The figure shows concurrency in CPS is close to iOrder when application reliability requirement is
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Figure 3.28: Mean concurrency comparison between CPS and iOrder

low. When application reliability requirement becomes higher, we experience more concurrency

loss compared to iOrder.

CPS vs. OCPS. Figure 3.29 shows the empirical cumulative distribution function (CDF) of the

communication reliability from each vehicle to its receivers in CPS and OCPS. We see that OCPS

achieves a much higher communication reliability than other existing protocols, with the minimum

communication reliability being 75% and the reliability being no less than the required 90% for

about 85% of the links from a broadcast sender to its receivers. Nonetheless, the communication



72

75 80 85 90 95 100

Reliability (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

CPS

OCPS

Figure 3.29: CPS vs. OCPS

reliability of about 15% of the links is less than the required 90% in OCPS, while CPS ensures

the required reliability for all the links. The reason for this is because, in OCPS, even though

the existence of an oracle addresses the signaling overhead challenge in PRK-based scheduling,

it is still difficult to precisely track the highly-dynamic signal power from one vehicle to another

in the presence of vehicle mobility, which makes it difficult to precisely track inter-vehicle inter-

ference relations and thus difficult to ensure predictable communication reliability. In CPS, the

gPRK model and the tracking of vehicle movements through well-understood vehicle dynamics

enable precise tracking of inter-vehicle interference relations and thus enable predictable interfer-

ence control and predictable communication reliability, showing the benefits of using the geometric

approximation of the PRK model in V2V networks.

3.5 Related Work

IEEE 802.11p is a well-studied industry standard specifying the medium access control

mechanisms for inter-vehicle communication. Inheriting basic Wi-Fi mechanisms such as CSMA

and thus unable to ensure predictable interference control, 802.11p-based solutions do not ensure

predictable link reliability, for instance, even unable to ensure a broadcast reliability of 30% when

information exchange load is high [53, 6]. To improve the reliability of inter-vehicle communica-

tions, schemes that control information exchange load as well as packet transmission power and

rate have been proposed [66]. Not addressing the fundamental limitations of CSMA in interfer-
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ence control, these schemes lead to the loss of network throughput and increase in communication

delay while still being unable to ensure predictable communication reliability [6], as we have also

observed in Section 3.4.

TDMA schemes [67, 69] have also been proposed for inter-vehicle communications. Based

on the protocol interference model which is inaccurate and cannot ensure predictable interference

control, however, these schemes cannot ensure predictable communication reliability. Multi-scale

schemes have also been proposed to first allocate non-overlapping sets of time slots to differ-

ent roads and then let vehicles on each road compete for channel access in a TDMA manner

[70, 71, 72]. Assuming a protocol interference model in both road-level scheduling and vehicle-

level scheduling, however, these schemes do not ensure predictable communication reliability.

Schemes have also been proposed to first partition space into geographic regions such as rectan-

gles or hexagons and then schedule transmissions based on geographic regions [73, 74]. Assuming

a protocol interference model, however, these schemes do not ensure predictable communication

reliability either. Resource allocation mechanisms have also been proposed to improve communi-

cation throughput between vehicles as well as between vehicles and transportation infrastructures

[75]. Focusing on network throughput, these work do not consider ensuring predictable, control-

lable reliability in vehicular communication, and, due to throughput-reliability tradeoff [5], the

high throughput usually comes at the cost of low communication reliability.

3.6 Concluding Remarks

For predictable reliability of inter-vehicle communications, we formulate and apply the ge-

ometric PRK (gPRK) interference model to predictable interference control in V2V networks. Our

approach to gPRK-based interference modeling effectively leverages cyber-physical structures of

V2V networks such as the spatial interference correlation, temporal link reliability bounds, cor-

related receiver ER adaptation, and set-cover-based control signaling in the cyber-domain as well

as the vehicle locations and microscopic vehicle dynamics in the physical domain. Leveraging

the cyber-physical, gPRK-based approach to interference modeling, our cyber-physical scheduling

(CPS) framework enables predictable reliability of inter-vehicle communications. Enabling pre-



74

dictable interference control and communication reliability in the presence of vehicle mobility, our

cyber-physical approach to interference modeling and data transmission scheduling is expected to

enable the development of mechanisms for predictable real-time, throughput, and their tradeoff

with reliability in inter-vehicle communications. While our focus in this study is on inter-vehicle

communications, the basic methodologies can be extended to enable predictable communication

reliability between vehicles and transportation infrastructures such as traffic lights. These are fu-

ture directions worth pursuing.
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CHAPTER 4: ENABLING SHORT-TERM RELIABILITY IN

INTER-VEHICLE COMMUNICATION WITH POWER CONTROL

4.1 Introduction

With the efforts described in both Chapter 2 and Chapter 3, we are able to achieve an av-

erage link reliability that is no lower than an application required reliability TS,R for each link,

yet short-term link reliability for each estimation interval may well be below the link reliability

requirement. Fundamentally, this is due to the fact that the control objective for the controller run-

ning at each link is to guarantee average link reliability. To ensure performance guarantee in WSC

systems with inter-vehicle communications settings, predictable per-packet successful reception

probability is a must. Our previous work in Chapter 3 has addressed the scheduling problem with

the help of the distributed solution ONAMA which provides us with a good foundation of average

packet reception probability guarantee at MAC layer. In this chapter, we will focus on control-

ling network dynamics in inter-vehicle communication networks. ONAMA, by design, aims at

providing average link reliability. The reason behind this fact is that the network conflict graph

which is ONAMA’s input is not generated with a goal of providing per-packet reception probabil-

ity guarantee. If we provide ONAMA with proper network conflict graph, it can be reused for our

problem in this chapter. With a more challenging goal, our solution needs to be able to adapt to

network condition changes in a more agile manner. To this end, in addition to exclusion region

and controller adaptations, we also leverage power control to achieve short-term link reliability in

inter-vehicle communications.

Distributed power control in wireless networks is pioneered by the work [76] which em-

ployed an iterative method to adjust transmission power in cellular networks. Iterative power con-

trol approaches soon become infeasible in highly mobile wireless networks like those with inter-

vehicle commutation settings due to fast topology changes, but these methods are well adopted by

problems with static network settings to provide solutions. Following the iterative power control

approach in [76], Weber et al. [77] proposed an iterative power control scheme called channel

inversion (CI) power control. In [77], the transmission power for a link i is controlled by the
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following scheme:

Pi =
p

E[H−1]
H−1

ii (4.1)

where p is the normal transmission power level, H is the channel fading matrix and Hii denotes

the fading factor from sender of link i to the receiver of link i. CI power control guarantees that the

receive power at each link is the same for all links, and the expected transmission power E[Pi] = p.

Based on CI power control, Jindal et al. relaxed the power control scheme into the following:

Pi =
p

E[H−s]
H−s

ii (4.2)

The parameter s varies from [0, 1]. When s = 0, the control scheme represents constant power

control (i.e., no power control); when s = 1, the control scheme represents CI power control

scheme. This more generalized form is called fractional power control (FPC). FPC performs better

compared to both no power control scheme and CI power control scheme.

While CI and FPC are both designed for continuous power control, Liu et al. [78] focused

on discrete power control (DPC) in which power levels are not continuous. Liu et al. showed that by

carefully choosing power levels, DPC is guaranteed to be better than cases when no power control

scheme is used for wireless ad hoc networks. When only discrete power levels are available, they

also show that DPC outperforms both CI power control and FPC.

The above-mentioned distributed power control schemes are all theoretical solutions, and

they make assumptions that may not hold in practice. For example, [76] assumes the H matrix

is known instantaneously; [77, 79, 78] assume network nodes distribution follows Poisson point

process (PPP) or Poisson cluster process (PCP), which may not hold in practice, especially in inter-

vehicle communications in which vehicles can only be located on roads, leaving much of the 2-D

space unoccupied.

Motivation In this chapter, we use similar system settings as we did in Chapter 3 where vehicles

periodically share their status to close-by neighbors in support of upper-layer applications, e.g.,

active safety applications. Vehicle status data are destined to vehicles within a certain geographic
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distance. Since communication range in DSRC could be several hundreds of meters, we consider

a one-hop broadcast communication paradigm in this chapter with DSRC settings such that the

geographic distance can be covered by a single broadcast transmission. The communication links

in Chapter 2 and Chapter 3 may experience periods of time during which their instantaneous link

reliabilities are lower than application requirements. During these periods, system performance

cannot be guaranteed, regardless of network node mobility. It makes our solutions in Chapter 2

and Chapter 3 unable to provide predictable guarantee in message delivery in a relatively short

period of time.

More specifically, our link plant model only adapts its system parameter when the link has

a new estimation of link reliability. With the default bandwidth in vehicle network communication

technology, we expect link reliability estimation interval falls in between [2, 20] seconds, depend-

ing on the underlying scheduling algorithm. This time interval is clearly too long for links with

fast link quality changes, for example, two vehicles moving in opposite directions on freeways.

According to our previous frameworks, network dynamics cannot be addressed by a link unless

it has a new link reliability estimation. This constraint may well result in degraded link reliabil-

ity and causes instantaneous packet reception probability to be lower than higher-level application

requirements.

Specifically, for a receiver R, let random variable Θ denote its controller adaptations. For

two consecutive controller adaptations Θn and Θn+1, the actual interference relations can change

from Θn to Θn+1. In static networks, these changes do not come from changes in R’s internal

status, since R has not adapted its exclusion region which redefines interference relations. As a

result, any changes between Θn and Θn+1 are not addressed unless R conducts a new controller

adaptation. That is, R does not have the ability to overcome these changes due to the lack of one or

more additional controller adaptations between Θn and Θn+1. Mobility makes things worse since

the controller adaptations may not be frequent enough to capture significant network condition

changes.
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Without power control, CPS or PRKS can suffer from concurrency loss in some special

cases, e.g., sparse network. Suppose two transmitters S and S1. If S1 is located at the edge of

the exclusion region of S, S1 cannot transmit concurrently with S because 〈S,R〉, Pr(S1, R) =

KS,R,TS,R
Pr(S,R). If the transmission power at S1 can be reduced such that

Pr(S1, R) < KS,R,TS,R
Pr(S,R), (4.3)

S and S1 can transmit concurrently according to the PRK interference model, thus improving

spatial reuse as long as the packet success reception probability at the receivers of S1 is still higher

than application requirements.

Challenges To accomplish the goal of short-term reliable broadcast communication in inter-

vehicle communications, we need to overcome the following challenges:

• Communication paradigm. Existing power control schemes in ad hoc networks generally

target on unicast communication where the sender of a link only has to guarantee its corre-

sponding receiver to have a signal to interference ratio (SIR) no lower than a threshold value

γ0
R,d assuming sender receiver distance is d, and receiver is R. Our problem settings differ

from these schemes in the sense that we consider power control mechanisms for a broadcast

problem in inter-vehicle communications that aim at providing short-term link reliability for

each individual receiver of a broadcast sender; A power control decision at a transmitter side

is a fused result by inspecting power level recommendations from all receivers.

• Packet reception model. Existing power control schemes assume once the SIR at the target

receiver is higher than γ0
R,d, the packet is guaranteed to be decoded correctly, which is not

true in practice. A more accurate model is a probabilistic model in which a probability

distribution is associated with the success rate of packet decoding for different SINR values.

• Mobility and node distribution. Mobility has always been the primary challenge compared

to scheduling in static wireless ad hoc networks. Due to mobility, network node distribution

may not have closed-form mathematical representations especially when vehicles’ mobility
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is confined by roads, and features of roads may well be irregular in terms of widths, di-

rections as well as traffic regulation signs. The commonly used PPP or PCP assumptions

generally do not hold in these specific settings. In our work, we do not assume any of such

node distributions.

• Control target. In the previous two chapters, we focus on average link reliability guarantee.

In this chapter, we should revisit our controller design to enable fast recovery from short-

term link reliability performance degradation.

Contributions We summarize our contributions as follows:

• We use Cantelli’s inequality to estimate an interference plus noise quantile and use it as input

to the link plant model to achieve probabilistic interference plus noise upper bound with an

error rate of 1− ρ. In this chapter, we set ρ = 0.95.

• We design a field-deployable power control algorithm that is based on realistic assumptions

and is aware of short-term packet reception probability. Besides, it works in highly mobile

inter-vehicle communication networks.

• We integrate our power control algorithm with the distributed scheduling framework dis-

cussed in Chapter 3 to make use of probabilistic interference plus noise upper bound and

guarantee performance.

4.2 System model and problem definition

Given a map M with freeways, local roads and traffic regulation signs, consider a network

with vehicles as network nodes on M. In our future discussions, we use vehicle and node inter-

changeably. Let us denote the vehicular network as G = (V ,E), where V denotes the set of

vehicles on M. For any vehicle S and R, if D(S,R) ≤ d0, we say link 〈S,R〉 belongs to the edge

set E, i.e., 〈S,R〉 ∈ E, where D(S,R) denotes the distance between vehicle S and vehicle R, and

d0 is a system parameter. If not emphasized, d is used to denote the distance between S and R, i.e.,

d = D(S,R), to simplify our notations in this chapter. We omit time slot in notations d or D(S,R)

unless we wish to differentiate d by time slots. Due to mobility and GPS errors, d changes over

time.
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To ease our discussion, we call our solution to the problem we will define in this section

Cyber-Physical Scheduling and Power control (CPSP). In CPSP, we consider reliable communi-

cation for all elements in E. More specifically, let S denote packet reception success event, F

denote packet reception failure event, and (Ω,F , P ) be a probability space, where Ω = {S,F},

F = {{S}, {F}}. We also suppose P is known for given hardware configurations. The goal is

to perform joint power control and scheduling at the MAC layer to guarantee for any time slot τ

and for any receiver R and its senders S ∈ SR,d such that if d ≤ d0, Pr{S|τ} ≥ pR,d with a maxi-

mum outage probability of 1−ρR,d while maximizing spatial reuse, where pR,d is a distance-based

requirement. That is, we want to have

Pr{Events of Pr{S|τ} ≥ pR,d} ≥ ρR,d. (4.4)

Notice that pR,d implies that for receiver R, the packet decode probabilities across different values

of d can be different. Notation ρR,d implies that outage probability of R for different values of d

can also be different. We will discuss SR,d in details in section 4.2.2.

4.2.1 Why distance-based?

Traditionally, people have been defining problems using IDs or addresses of senders and

receivers in wireless communication systems. Due to reasons we will discuss in this section, our

problem has been defined based on distance. Before we discuss these reasons, we emphasize that

guaranteeing packet reception probability for each receiver with a unique ID within d0 distance

away is the same as guaranteeing packet reception probability for receivers with d distance away

if d can be any value in [0, d0]. Thus, it makes no difference to differentiate using ID based or

distance based problem definition in terms of outcome.

Our solution to CPSP involves estimating a probabilistic upper bound of interference plus

noise at each receiver’s side. Once CPSP gets the estimation, CPSP does power control for perfor-

mance improvement. More details on the solution are given in Section 4.3. In what follows, we

discuss key reasons that drive us to use distance-based problem definition.
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Interference estimation challenge In this work, we choose to use gPRK model to

control interference plus noise for each link at its receiver’s side. In what follows, we use a typical

link 〈S,R〉 for discussion. According to the gPRK model, we have a parameter KS,R,TS,R
and a

link distance d = D(S,R). The circular area with radius KS,R,TS,R
× d centered at the location of

R is the exclusion region area defined by the link’s gPRK model. In inter-vehicle communication

networks, d changes with high frequency, which means the exclusion region area of the link 〈S,R〉

changes quite frequently. In static network like the one considered in Chapter 2, if link 〈S,R〉

has its PRK model parameter fixed, its exclusion region area tends to be stable. This is due to

unchanged PRK model parameter until the next controller adaptation, and we noticed average

signal attenuation between a fixed distance changes in slower frequency, e.g., minutes. Thus, the

interference plus noise R can experience while receiving data is upper bounded. With a well-

designed scheduling algorithm, the upper bound is usually achieved when a maximum amount of

allowable concurrent transmissions happen while nodes in the exclusion region do not transmit. In

vehicular network, on the contrary, since d can change extremely fast (e.g., two vehicles moving

southbound and northbound on a two-way freeway respectively), the link has an unstable exclusion

region, regardless of the area covered by its exclusion region or nodes fall in its exclusion region.

Although in reality, d 6= 0, the changing exclusion region makes it extremely difficult to estimate

the upper bound of interference plus noise. We noticed that in gPRK model, exclusion region is

defined by distance and the gPRK model parameter. With changing distance, the history samples of

interference plus noise cannot provide meaningful guidance in interference plus noise estimation.

For per-packet reception probability, if we cannot estimate interference upper bound accurately, a

data reception can easily get corrupted due to unexpected strong interference. This usually happen

when d has decreased too much.

Signal attenuation estimation challenge As we will see later in 4.3.4, signal atten-

uation between nodes is an important input for power assignment. Following the node ID- or

address-based problem definitions, we have the similar challenge in estimating statistics of signal

attenuation between two nodes in vehicular networks. Let us assume node S is moving south-
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bound, and node R is moving northbound on a two-way freeway. If they both move at a speed of

70 MPH (≈ 31.3m/s), the distance between S and R can change roughly 60 meters per second.

While distance is not a good indicator for signal strength attenuation, it is still safe to say a dis-

tance change rate like this large certainly implies large signal attenuation variations. Since distance

between S and R may not be recurring, samples of signal strength attenuation between S and R

provide no meaningful guidance for future signal attenuation estimation.

When both interference plus noise and signal strength attenuation between two nodes in

the network cannot be effectively estimated in node ID- or address-based problem definition, it is

infeasible to provide per-packet reception probability guarantee.

Benefits of distance-based problem definition With distance-based problem defi-

nition, we propose to group interference plus noise by a constant distance at a receiver R. For

instance, interference plus noise sampled with sender receiver distance d′ and d′′ belong to differ-

ent groups when d′ 6= d′′. Since exclusion region is defined by both link distance and gPRK model

parameter, we also propose to define a distance based packet reception probability concept, see

Section 4.2.2 for details. With distance-based packet reception probability, exclusion regions we

will get through exclusion region adaptations become valid for distance d at the receiver R. As long

as we group exclusion regions by distance d and gPRK model parameter, we have homogeneous

interference plus noise samples in the sense that they are sampled when the node exclusion regions

are of the same size. Statistics computed from these homogeneous samples are more trustworthy.

Similarly, if we group signal attenuation by distance, all samples within the same group

represent signal attenuations from a fixed distance away. While distance is not a perfect indica-

tor for signal strength attenuation, it does provide some guidance on signal strength attenuation.

When distance is fixed, the estimated statistics can provide much better implications on signal

attenuations between nodes.

4.2.2 Packet reception probability estimation

The problem we consider requires that every sender S ∈ SR,d of receiver R should have

per-packet reception probability no lower than pR,d. Due to mobility, consecutive packets from the
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same sender S to R are sent with different values of d with high probability. Further, for the same

reason, the link 〈S,R〉 may never be able to collect enough packet reception samples if the relative

speed between S and R is too large. Large relative speed results in links with very short life time.

Thus, we propose a distance-centric estimation method as follows:

For the same receiver R, and a distance d′, as R’s one hop neighbors transmit packets in

different time slots, R maintains a set of triples (S, τ, d′) which should be identified by d′ and τ ,

where S is a sender, τ is a time slot, and d′ is a distance independent of sender S. With d′, we

define a sender set at R as

{SR,d′|∀s, such that D(s, R) = d′}. (4.5)

For any s ∈ SR,d′ , the receiver R collects the packets been received and puts them in a set ΦR,d′ ,

where ΦR,d′ denotes packets received while sender receiver distance is d′. According to the prob-

lem definition, whenever a sender receiver pair has distance d′, they need to satisfy packet reception

probability pR,d′ . Receiver R estimates packet reception probability based on SINR samples ob-

tained while R was receiving packets that belong to ΦR,d′ for distance d′. Notice that for a different

distance d′′, the receiver R should maintain another packet set, i.e., ΦR,d′′ .

For each packet η ∈ ΦR,d′′ , the receiver R has an SINR sample recorded. When estimating

packet reception probability for the packet η, CPSP inspects the mapping δ. For instance, let us

assume the SINR value R recorded for packet η is γη(τ) assuming the packet was been transmitted

in time slot τ , then the packet reception probability is δ
(
γη(τ)

)
.

The benefits of estimating packet reception probability in this way are the following:

• In inter-vehicle communications, many applications are defined by distance between vehi-

cles pairs, such as active safety application, instead of the actual sender receiver pairs.

• Using ΦR,d′ to estimate packet reception probability, we base the estimation on packets that

experienced similar signal attenuations and interference statistics, please refer to Section 4.3

for details. Furthermore, once we guarantee the reception probability of every packet η ∈

ΦR,d′ , where d′ ∈ [0, d0], we then have solved the problem we consider.



84

• Exclusion region adaptations control packet reception probability from senders of a certain

distance away. Once we have an exclusion region, regardless of vehicle mobility, the exclu-

sion region is valid since it does not depend on senders, but only distances.

• Per-packet reception probability is still guaranteed via pR,d. Notice that pR,d is inherently

defined at the receiver R’s side because only receivers can collect received packets and cal-

culate PDR or packet reception probability without any feedback involved.

• For power control, we have a better foundation in the sense that signal strength attenuations

are similar. We could then estimate the attenuation statistics. With the help of interference

upper bound estimation discussed in Section 4.3.7, receivers are able to choose a power

level that satisfies minimum SINR constraints and request its senders to use a power level no

smaller than the chosen one through feedback. .

• Since packets are grouped by link distance, and exclusion region adaptation decisions are

using distance-grouped packets, a receiver will only have one gPRK model parameter for a

distance. This provides us with a good foundation for interference distribution estimation

in the sense that the estimation is not sensitive to node distributions. Samples from history

can be easily utilized to form larger interference sample sets. As network exists longer, our

interference distribution estimation will become more accurate.

Notice that we do not care about node densities within or without exclusion regions since the gPRK

as well as the original PRK model have been defined in a node density-independent context. In

discussions below, we no longer use KS,R,TS,R
to denote gPRK model parameter. Instead, we use

KD(S,R),pR,D(S,R)
with an emphasis on distance between S and R and the receiver R. We further

simplify the notation with KpR,d
since the the distance and the receiver are in the notation pR,d.

In future discussions, we add receiver and distance information in our Θn notation, thus for

receiver R and sender receiver distance d, the nth controller adaptation is denoted as Θn,R,d.

4.2.3 Assumptions

There are several assumptions we make for CPSP. We intentionally divide them into essen-

tial ones and evaluation ones. For essential assumptions, we have the following ones listed:

• Vehicles are equipped with a single radio. MIMO is not considered in this work,
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• Wireless channels are asymmetric and experience fading and shadowing,

• Each vehicle has a GPS unit on board,

• Vehicles are able to adjust packet transmission powers, both data and control packets,

• Time is slotted, and synchronized by GPS,

• Packet reception is probabilistic, even for large SINR values,

• Energy is assumed to be unlimited as long as vehicles are turned on,

• Background noise is assumed to be a zero-mean random variable.

For assumptions that are we manually set in evaluation and independent of solution design,

we have the following assumptions:

• Vehicles mobility uses car-following model in our experiment evaluation,

• Errors for GPS range from 4 to 8 meters.

4.2.4 Use gPRK model instead of PRK model

One of the fundamental problems in addressing reliable communication is interference

modeling and control. In this chapter, we use a variant of the PRK interference model, gPRK, to

model interference in inter-vehicle communication networks. Please refer to Chapter 3 for more

discussions on the gPRK model and the benefits of using it. The adaptive nature of the gPRK

model requires each receiver to run a local controller for reliability-aware interference control.

4.3 CPSP: cyber-physical scheduling and power control

In this section, we first give an overview of the CPSP system. We then discuss reasons

that motivate us to use a two-step approach to solve the problem we defined in Section 4.2. We

describe the algorithm running at each controller that helps achieve probabilistic interference plus

noise upper bound in Section 4.3.3. We then discuss details on power level assignment policy,

interference sampling, signal map maintenance, exclusion region adaptation logics and how we do

quantile estimation. For reference purpose, we list all notations used in this section in Table 4.1.
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Notation Meaning

D(S,R) distance between node S and node R
τ time slot

γR(τ) SINR value at receiver R in time slot τ

KpR,d

gPRK model parameter for receiver R and node distance d with

requirement pR,d

ρR,d quantile parameter of random variables for receiver R and distance d
pR,d the packet reception probability requirement for receiver R and distance d

Ĩ generic notation for interference plus noise

SR,d
sender set recorded at receiver R when distance between elements

in the set and R is d

Θn,R,d the nth controller adaptation at receiver R for distance d

QX
ρ0

the ρ0 quantile value for random variable X

∆QĨR,d
ρR,d(Θn,R,d)

The amount of extra quantile value of Ĩ exclusion region

adaptation should accommodate at controller adaptation Θn,R,d

δ the SINR to PDR mapping

ĨR,d(Θn,R,d)
interference plus noise samples after controller adaptation Θn,R,d at

receiver R for distance d
NR,d(Θn,R,d) noise samples after controller adaptation Θn,R,d at receiver R for distance d

∆IU,(R,d)(Θn,R,d) changes of interference beyond exclusion region at R for d

Pr,(R,d)(Θn,R,d)
receive power samples after controller adaptation Θn,R,d at

receiver R for distance d

Pt,(R,d)(Θn,R,d)
transmit power samples after controller adaptation Θn,R,d

at receiver R for distance d
ω packet reception probability estimation window

γi
R,d(Θn,R,d)

the SINR value of the ith packet received at receiver R for distance d after

controller adaptation Θn,R,d

ΦΦΦR,d the packet set at R when sender receiver distance is d

∆Ĩg,(R,d)(Θn,R,d)
the difference between ρR,d quantile controller wishes to achieve

and the actual interference plus noise quantile value

ǫ an extra amount of SINR in controller to help stabilize network

QĨR,d
ρR,d(KpR,d

, d)
long-term estimation of interference plus noise quantile,

regardless of time slot at R for d
AR,d samples of signal strength attenuation at R for nodes distance d away

Prc,(R,d) R generated sender transmission power recommendation for distance d

Ĩgray band computed interference plus noise values from neighbors in a circular band

Table 4.1: Notations in use in CPSP
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Figure 4.1: System diagram of CPSP
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4.3.1 CPSP system overview

In this section, we briefly describe CPSP as a complete system with its system diagram

shown in Figure 4.1. To guarantee probabilistic packet reception, we solve the problem defined

in Section 4.2 from two aspects of a wireless communication system. They are interference plus

noise control and power control. Following gPRK- or PRK-based scheduling, each network node

runs a distributed MAC scheduling algorithm. In this chapter, we use ONAMA as shown at the

top of Figure 4.1. ONAMA scheduling requires a conflict graph as input. ONAMA then takes

the input and calculate maximal independent sets (MIS) using pipelined calculation. We will

discuss how to calculate conflict graph later in this overview section. Each node transmits data

packets according to results generated by ONAMA. Before sending out a data packet, the node

needs to decide which transmission power level it should use. The decision process is discussed in

Section 4.3.4. Basically, a sender inspects feedback information from its receivers. The feedback

information is a transmission power each of its receivers has requested the node to use to guarantee

minimum SINR requirement. Once a data packet is been sent out, receivers of the packet samples

location, SINR, interference plus noise and signal strength attenuation from the sender. These

sampled data are later used to drive decision processes in CPSP. For the control algorithm, as

we will see in Section 4.3.3, it needs a quantile of sampled interference plus noise, a quantile of

sampled SINR values to generate an amount of interference plus noise the receiver that runs the

algorithm should allow or prevent to provide performance guarantee for future packets it tries to

receive. When running the control algorithm, the receiver also needs system parameters γ0
R,d and

ǫ, which will be covered in Section 4.3.3. All quantile values are generated using a single method

discussed in Section 4.3.9. After the control algorithm has generated output, the receiver invokes an

exclusion region adaptation process described in Section 4.3.8 to re-instantiate the parameter of its

gPRK model. The output of the gPRK model parameter re-defines conflict relations of surrounding

nodes. Thus, it becomes part of the input for conflict graph calculation. When calculating conflict

graphs, nodes in CPSP use gPRK model parameters. Only nodes that are located outside of the

exclusion region defined by the gPRK model are regarded as not conflicting. The sampled signal



89

strength attenuations together with sampled interference plus noise are the input of the process

of calculating the minimum transmission power required to meet minimum SINR requirement at

receivers’ side. We call this minimum transmission power a transmission power recommendation

from receivers’ perspective. This will be discussed in detail in Section 4.3.4 .

4.3.2 Motivation for a two-step approach

In this section, we focus our discussion on a receiver R and its sender S with distance

d = D(S,R) when time slot is τ . That is, S ∈ SR,d. To perfectly guarantee Pr{S|τ} ≥ pR,d for

τ and link 〈S,R〉 , the sender S would need to know the exact SINR values at R, i.e., γR(τ), in a

decision-making phase that is prior to packet reception. In Section 4.2, we have assumed for given

hardware configurations, the packet reception probability for a given SINR is known. For each

time slot, with realistic assumptions as listed in section 4.2.3, however, we are unable to assume

γR(τ) is known since the exact interference power at R is unknown in advance.

There are several reasons that contribute to this fact:

• A sender cannot tell where the non-local simultaneous transmitters are located, and it is

unable to estimate the interference caused by them individually with high accuracy. We say

two nodes in a network are non-local when there is no direct communication in between.

• Due to network dynamics, e.g., node mobility, asymmetric and non-deterministic wireless

channel, a vehicle cannot get the exact interference introduced by a concurrent transmitter.

• With power control, the exact transmission power levels of concurrent transmitters are also

non-deterministic.

The goal of guaranteeing the condition Pr{S|τ} ≥ pR,d for link 〈S,R〉 is too strong when

pR,d is large. For the same link configuration, if 〈S,R〉 has satisfied the condition at the current

time slot, it may well violate the condition at the next time slot due to changes in its concurrent

transmitter set as well as their transmission power levels. To make things worse, mobility and chan-

nel characteristics in inter-vehicle communications also make link configurations different even in

consecutive time slots. Therefore, we assume for time slot τ and τ + 1, link qualities for the same

link 〈S,R〉 identified by node addresses of its sender S and receiver R are different. For each
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time slot, the approach CPSP employs is to conservatively protect per-packet reception probabil-

ity by studying interference introduced by concurrent transmitting neighbors and then estimating

a probabilistic upper bound of sampled interference plus noise using a non-parametric quantile

estimation method, see Section 4.3.9 for details. The quantile value serves as a probabilistic upper

bound.

This proactive method can be quite effective due to the following reasons:

• Assuming d = D(S,R), the receiver R inspects statistics of interference plus noise and

KpR,d
that are associated with distance d. As we will discuss in Section 4.3.7, interference

plus noise samples only depend on node distance d and KpR,d
, thus the receiver R can ac-

cumulate interference plus noise samples as long as it exists in the network. A quantile

from homogeneous interference plus noise samples becomes more accurate as the number

of samples increases. When d changes, the quantile of interference plus noise R used for

power control changes with d. However, the new interference plus noise quantile different

from the previous quantile still represents a good probabilistic upper bound estimation. This

is because of the long-term quantile estimation of interference plus noise we will discuss in

Section 4.3.3. If the quantile estimation is not accurate, link 〈S,R〉 gets an outage. With

large value of ρR,d, say 95%, this outage probability is expected to be low.

• Per-packet power control will handle link quality variations mainly due to node mobilities

and guarantee Pr{S|τ} ≥ pR,d. Power control is based on assuming interference plus nose

and signal attenuations are the ρR,d quantile of sampled values, thus will generate conser-

vative decisions. We will discuss how CPSP gets signal attenuation samples in vehicular

networks shortly.

For ease of discussion, we use Ĩ to denote interference plus noise in future discussions.

It becomes necessary to perform power control once Ĩ is well-bounded if we want to improve

network efficiency by allowing more nodes to transmit concurrently.

Given the probabilistically bounded Ĩ, and to achieve better concurrency and throughput,

CPSP addresses the problem defined in Section 4.2 in a two-step approach as follows:
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• Step one. Controller helps achieve probabilistically bounded Ĩ. In this work, ρR,d is

treated as a system parameter. Larger ρR,d means more accurate probabilistic interference

plus noise bound in general.

• Step two. Per-packet power control between two consecutive controller adaptations achieve

fine-grained packet reception probability guarantee while trying to maximize network con-

currency.

4.3.3 Step one: Interference plus noise quantile control

In this section, we focus our discussion on a receiver R with its senders SR,d. In addition,

we still use d to denote the distance between a sender S ∈ SR,d and the receiver R, i.e., D(S,R),

and assume time slot is τ .

Preliminaries We first define a ρ0-quantile function. Let X be a random variable,

and define QX
ρ0

to be the function that takes the ρ0-quantile value from the random variable X . Let

γγγ(Θn,R,d) be a random variable denoting the SINR (i.e., γR) values at R while R is receiving pack-

ets between Θn,R,d and Θn+1,R,d. Let δ : γ → [0, 1] be the probability measure that maps packet

reception SINR values to packet reception probability P . Notice that δ is assumed to be known

as detailed in Section 4.2. Let random variables IR,d(Θn,R,d), NR,d(Θn,R,d), Pr,(R,d)(Θn,R,d), and

P t,(R,d)(Θn,R,d) denote samples of interference, noise, data packet reception power at receiver R,

and data packet transmission power at senders of R between Θn,R,d and Θn+1,R,d while sender

receiver distance is d. In our later discussions, unless we explicitly mention, packets refer to data

packets that are transmitted in data sub-slot.

With δ, IR,d(Θn,R,d), NR,d(Θn,R,d), our goal is to guarantee, for receiver R , Pr{S|Θn,R,d} ≥

pR,d with an outage probability of ρR,d for packet receptions towardsΘn+1,R,d. Let γ0
R,d = δ−1(pR,d)

be the minimum SINR that guarantees packet reception probability of pR,d. γ0
R,d tends to be differ-

ent for different d values. Suppose packet reception probability estimation window of receiver R

is ω, then the goal is translated into controlling Pr{γi
R,d(Θn,R,d) ≥ γ0

R,d} ≥ ρR,d for ∀i, i ∈ [1, ω],

where γi
R,d(Θn,R,d) denotes SINR of the ith packet after Θn,R,d at R. Notice that packets considered

here are those received while sender receiver distance is d, i.e., ΦR,d.
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Per-packet SINR variations after Θn,R,d compared to those before Θn,R,d are due to the

following reasons:

• The adaptation amount ∆QĨR,d
ρR,d(Θn,R,d) generated by the controller at R in Θn,R,d to address

changes of interference plus noise within the current exclusion region. ∆QĨR,d
ρR,d

(Θn,R,d) de-

notes the amount adjusted for ρR,d quantile of interference plus noise in controller adaptation

Θn,R,d. Variations of background noise ∆NR,d(Θn,R,d) are considered in ∆QĨR,d
ρR,d(Θn,R,d).

Notice that NR,d(Θn,R,d) is modeled as a zero-mean random variable. QĨR,d
ρR,d(Θn,R,d) +

∆QĨR,d
ρR,d

(Θn,R,d) denotes the ρR,d-quantile interference plus noise the controller at R wishes

to achieve at Θn+1,R,d, and we use Q̄ĨR,d
ρR,d(Θn+1,R,d) to denote this amount. Thus, we have

Q̄ĨR,d
ρR,d(Θn+1,R,d) = QĨR,d

ρR,d(Θn,R,d) + ∆QĨR,d
ρR,d(Θn,R,d). (4.6)

The actual quantile at Θn+1,R,d as a control result, i.e., QĨR,d
ρR,d(Θn+1,R,d) , may differ. There-

fore, we have

Q̄ĨR,d
ρR,d(Θn+1,R,d) = QĨR,d

ρR,d(Θn,R,d) + ∆QĨR,d
ρR,d(Θn,R,d) ≈ QĨR,d

ρR,d(Θn+1,R,d). (4.7)

• Dynamics of interference beyond the exclusion region when sender receiver distance is d,

denoted by ∆IU,(R,d)(Θn,R,d). Notice that these senders form the set of SR,d.

• Changes of transmission power and attenuation among SR,d and receiver R denoted by

∆Pr,(R,d)(Θn,R,d). Notice that we use reception power to represent dynamics in both sig-

nal attenuation and transmission power. Shadowing and fading effects are automatically

captured by measured signal strength values.

Discussion on orthogonal decision-making With power control and exclusion region

adaptations enabled, each receiver has to make decisions on which action to take according to its

current packet reception probability statistics in order to provide probabilistic packet reception

guarantee. A receiver can independently take two actions: exclusion region adaptation and power

control. Intuitively,
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• If the packet reception probabilities at receiver R are satisfied, R can reduce either its exclu-

sion region or request transmission power level reduction from senders to make its packet

reception probabilities as close to application requirements as possible.

• If the packet reception probabilities at R are not met, R can increase either its exclusion

region or request transmission power level increase from senders to make sure its packet

reception probability requirements are satisfied.

Note that each receiver strikes to make its packet reception probabilities as close to appli-

cation required probabilities as possible, this is so that CPSP can improve network concurrency.

For the receiver R, changing exclusion regions alone does not affect transmission power, thus its

senders will statistically not introduce extra interference to neighbors. However, packet reception

probability of neighbors will still be affected because network concurrency will change in general.

Thus, the factor affected by changing exclusion region are concurrency and packet reception prob-

ability. On the other hand, if the receiver R chooses to request its senders to adjust transmission

powers, the statistics of interference introduced by its senders seen by neighbors will change. As

a result, packet reception probabilities at neighbor links will be affected. This action usually will

not affect concurrency since exclusion regions are not altered. It is obvious that both actions affect

packet reception probability in their own way.

In this work, we propose to make orthogonal decisions on exclusion region adaptation and

power control such that they do not change at the same time. Let us consider the following case

for an example. Suppose the receiver R has a very large exclusion region that makes interference

plus noise very small, which results in too good packet reception probabilities. Now the sender

of R, say S, observes the overshoot in packet reception probability and decides to reduce packet

transmission power levels. In the meantime, receiver R decides to reduce its exclusion region

because the interference plus noise values it experienced reflects that interference plus noise was

over-protected. By reducing reception power and allowing extra amount of interference plus noise,

the two independent actions at the link 〈S,R〉 would potentially make its packet reception prob-

ability be lower than application requirements. Furthermore, as we will see in future discussions
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in Section 4.3.4, power control decisions are based on statistics of sampled results. Since taking

samples also takes time, simultaneous decisions on exclusion region adaptations and power control

are infeasible in our solution framework. We formally summarize this principle as follows:

Principle 4.1. At any time for a receiver R and a distance d, the receiver R can only take one

action in exclusion region adaptation and power control.

Notice that when we say take action to do power control, we refer to statistically changing

of inputs to the power control action.

Control goal In CPSP, the exclusion region adaptations are no longer aimed to control

average interference plus noise. Instead, CPSP targets to control quantile of ĨR,d by changing the

gPRK model parameter KpR,d
.

Before we jump into details in controller design, let us define some additional notations.

For each receiver R and sender S ∈ SR,d, we define QĨR,d
ρR,d(KpR,d

, d) as a long-term estimation

of the ρR,d quantile of interference plus noise R has for gPRK model parameter KpR,d
. The term

long-term means a time duration longer than a controller adaptation interval. We also define ǫ ≥ 0

as an SINR margin such that when receiver R is receiving packets, and if the condition γ0
R,d ≤

γi
R,d ≤ γ0

R,d + ǫ holds, receiver R stops power control and exclusion region adaptations, where

i ∈ [1, ω] is an integer. We introduce ǫ to improve network stability.

For decision-making at controller adaptation Θn+1,R,d, we already have ĨR,d(Θn,R,d) and

Q̄ĨR,d
ρR,d(Θn,R,d). We then can compute QĨR,d

ρR,d(Θn,R,d) from ĨR,d(Θn,R,d) according to the method

described in 4.3.9. Let

∆Ĩg,(R,d)(Θn,R,d) = Q̄ĨR,d
ρR,d(Θn,R,d)−QĨR,d

ρR,d(Θn,R,d). (4.8)

∆Ĩg,(R,d)(Θn,R,d) denotes the difference between ground truth interference plus noise quantile

value and the target interference plus noise quantile value the controller at R has set in the lat-

est controller adaptation, i.e., Θn,R,d. The sign of ∆Ĩg,(R,d)(Θn,R,d) denotes if the ρR,d probabilistic
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interference plus noise upper bound was successful or not. We further let

∆γR,d(Θn,R,d) = QγγγR,d

1−ρR,d
(Θn,R,d)− γ0

R,d − ǫ. (4.9)

The entire controller diagram for controlling interference plus noise probabilistic upper

bound is given in Figure 4.2.

Figure 4.2: Controller diagram for CPSP

The algorithm running in the ‘regulator’ is briefly described as follows:

1. If ∆Ĩg,(R,d)(Θn,R,d) < 0, interference plus noise is not well bounded. Since interference

comes from outside of the coverage area of exclusion region, we definitely need to in-

crease exclusion region. In this case, the samples in ĨR,d(Θn,R,d) after Θn,R,d and be-

fore Θn+1,R,d represent the most recent network conditions in terms of interference plus

noise. Since the previous quantile was inaccurate in bounding ĨR,d(Θn,R,d), CPSP first uses

ĨR,d(Θn,R,d) to update long-term quantile for the current gPRK model parameter KpR,d
,

which is QĨR,d
ρR,d

(KpR,d
, d). Then, CPSP uses only ĨR,d(Θn,R,d) samples to compute a dif-

ferent ρR,d quantile of interference plus noise which denotes the current network conditions.

These two quantile values usually should differ. We propose to let vehicles keep records

on parameter KpR,d
, link distance d, and interference plus noise quantile values in a hash

map manner such that CPSP can search locally for a gPRK model parameter KpR,d
that has

a ρR,d quantile value closest to but greater than Q̄ĨR,d
ρR,d(Θn+1,R,d). If no satisfactory records

were found, CPSP adapts exclusion region for R and distance d and creates a new record
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of an association among parameter KpR,d
, distance d, and quantile of ĨR,d. Please refer to

Section 4.3.8 for details of exclusion region adaptation.

2. If ∆Ĩg,(R,d)(Θn,R,d) ≥ 0, we further differentiate the situations as follows:

(a) If −ǫ ≤ ∆γR,d(Θn,R,d) < 0, CPSP recognizes the power assignments and exclusion

regions as stable and will keep them fixed since ∆γR,d(Θn,R,d) ∈ [0, ǫ]. We visualize

Figure 4.3: Case of stabilized exclusion region and power assignment

this scenario in Figure 4.3. The figure shows interference plus noise is well-bounded

since the actual quantile is smaller. We use longer bars to denote larger amount. This

convention applies to both interference plus noise quantiles and SINR quantiles. In this

case, the 1− ρR,d quantile of SINR and the interference plus noise quantile in Θn+1,R,d

are expected to be the same as in Θn,R,d as shown in the gray area.

(b) If ∆γR,d(Θn,R,d) < −ǫ, given that ∆Ĩg,(R,d)(Θn,R,d) ≥ 0 denotes interference plus

noise is well-bounded, power control alone is adequate to guarantee packet reception

probability. CPSP keeps exclusion region of receiver R regarding distance d fixed.

We visualize this case in Figure 4.4. Again, interference plus noise is well-bounded,

which denotes our previous exclusion region adaptation was successful. According to

our two-step approach and Principle 4.1, we only use power control for performance

guarantee, and power control will make sure QγγγR,d

1−ρR,d
(Θn+1,R,d) is no smaller than γ0

R,d.
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Figure 4.4: Case of unsatisfied SINR constraints when Ĩ is well-bounded

(c) If ∆γR,d(Θn,R,d) ≥ 0, packet reception probability is satisfied. We have two options to

make packet reception probability of R as close to application requirements as possible.

These two options are listed as follows:

i. if ∆Ĩg,(R,d)(Θn,R,d) > ∆γR,d(Θn,R,d), since interference plus noise is well-bounded,

we decrease the exclusion region for receiver R and distance d by an amount of

∆γR,d(Θn,R,d) − γ0
R,d. This amount makes sure when power assignment is not

changed, the extra amount of positive ∆γR,d(Θn,R,d) disappears due to increased

background interference. As visualized in Figure 4.5, the quantile of sampled in-

Figure 4.5: Case of over-protected quantile of interference plus noise
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terference plus noise is much smaller than controller controlled quantile, we can

still reduce the interference plus noise quantile value to achieve a receiver side

SINR quantile closest to γ0
R,d while interference quantile control is effective. No-

tice that for SINR, we have γR,d(τ) = Pt,(R,d)(τ) − AR,d(τ) − ĨR,d(τ), where

Pt,(R,d)(τ) and ĨR,d(τ) are in unit of dBm, AR,d(τ) is in unit of dB, and τ is a time

slot. The amount of interference we increase will result in the amount of SINR we

decrease, statistically. Thus, we have set the amount to be ∆γR,d(Θn,R,d) − γ0
R,d,

and QγγγR,d

1−ρR,d
(Θn+1,R,d) will be no smaller than γ0

R,d.

ii. if ∆Ĩg,(R,d)(Θn,R,d) ≤ ∆γR,d(Θn,R,d), CPSP keeps exclusion region of R for d

fixed. Power control alone will be enough to guarantee packet reception proba-

bility. As visualized in Figure 4.6, we have interference plus noise well bounded,

Figure 4.6: Case of too large transmission power level used

and SINR values are much larger than threshold. In fact, the SINR difference with

respect to γ0
R,d is too large comparing to interference plus noise bound. In this

case, we propose to only use power control to reduce SINRs.

The output of the ‘regulator’ is ∆QĨR,d
ρR,d(Θn,R,d) as Figure 4.2 shows. From the controller’s per-

spective, it updates Q̄ĨR,d
ρR,d(Θn+1,R,d) according to Equation 4.7.
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Discussion As we have described, a receiver will try to make its packet reception

probabilities as close to application requirements as possible for all distance d′ ∈ [0, d0], due to

the nature of broadcast, receivers with smaller sender receiver distance will have better packet

reception probabilities as long as their senders try to guarantee packet reception probabilities for

all their receivers. The CPS work has shown if a sender guarantees PDR for receivers further away,

receivers close-by will automatically have better PDR guaranteed, please refer to Figure 3.27 for

details. This observation can give us some guidance on how to share control information, i.e., CPSP

can only share information for longer links; if no such links exist, then CPSP shares information

for shorter links instead.

4.3.4 Step two: power feedback and assignment

In our previous works on PRK-based scheduling, transmission power levels are fixed for

each transmitter. No feedback is need for power level assignment. In CPSP, a receiver needs to

provide feedback information to its senders for them to choose transmission power levels. For

receiver R to estimate transmission powers Pt,(R,d)(S,R) for its sender S, it needs to know signal

attenuation values from distance d = D(S,R) away. Let us use AR,d to denote these attenuation

values. Receiver R also needs to know interference plus noise at R, i.e., ĨR,d, and the target SINR

R wishes to achieve, which is γ0
R,d. If we consider all of them in unit of dBm or dB, we have

Pt,(R,d) −AR,d − ĨR,d = γ0
R,d. As we will discuss in Section 4.3.7, R will be able to differentiate

AR,d(τ) and ĨR,d(τ) for a time slot τ . When making decisions on which power level receiver R

requests its senders of distance d away to use, R uses Equation 4.10 to compute a transmission

power recommendation Prc,(R,d):

Prc,(R,d) = γ0
R,d +QĨR,d+AR,d

ρR,d . (4.10)

Since R also has statistics summary of signal attenuations from neighbors for distance d, it explores

these neighbor feedbacks by taking EWMA of all conflicting neighbors with coefficient e, the

neighbors that are closer to R have more weight. For instance, if e = 0.8, R1 is 200 meters away,
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but R2 is 100 meters away from R, then feedback from R1 is taken into EWMA first, then R2, and

finally R itself. In our evaluation, we set e to be 0.8.

When a sender S is allowed to transmit in a time slot, it inspects transmission power rec-

ommendations from all its receivers and choose the maximum transmission power of all recom-

mendations to provide performance guarantee for all its receivers.

4.3.5 Timing of statistics usage

In this section, we sort out the timing of using various sample statistics in CPSP. As we have

discussed in Section 4.3.2, senders obtaining instantaneous SINR at receivers side is impossible.

Similar arguments applies to signal strength attenuation and interference plus noise too. As a

result, we use statistics of samples for decision-making in CPSP. This implicitly indicates delay in

using measured data. We show the relation of timing of each sampled data in Figure 4.7. First,

we need to realize each node in the network G can be either transmitting node or receiving node

as long as it does not send and receive in the same time slot. In Figure 4.7, we use the upper

portion of the figure to demonstrate how a node, say R, when acting as a receiver should use

sampled data. Let us focus on the controller adaptation Θn,R,d in our discussion. Before node

R performs the controller adaptation Θn,R,d, it has sampled packet reception SINR values, and

the corresponding interference plus noise and signal strength attenuations from its senders. All

these data are used in controller adaptation Θn,R,d which happens in a future time with respect to

the sampling time instants. Similarly, when a node acts as a sender (as indicated in the bottom

portion of the figure), it needs to share its own power recommendations to its future senders in its

data packets. As discussed in Section 4.3.4, the node needs statistics of interference plus noise

and signal strength attenuation. Since it is infeasible to get any accurate instantaneous samples

or estimation of interference plus noise and signal strength attenuation for the sending time slot,

CPSP lets the node to use previously obtained samples and the statistics from them. Notice that in

power level recommendation calculations, signal strength attenuation and interference plus noise

sampled after Θn,R,d make no contributions. This decision follows Principle 4.1.
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Figure 4.7: Timing of statistics usage of sampled data
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In terms of timing of statistics usage, we summarize a principle CPSP follows and give it

as follows:

Principle 4.2. Nodes only use statistics of samples prior to the latest controller adaptations. Data

sampled after the latest controller adaptation are used for future decision-making only.

4.3.6 Link signal strength attenuation sampling

Signal strength attenuation sampling and statistics are important in both distributed schedul-

ing and power control in CPSP, yet the signal map scheme we had in CPS cannot provide us with

enough samples due to the following reasons:

• In PRKS or CPS, all signal map records maintain the latest estimation of the average signal

attenuations among R and its neighbors. Signal maps in our previous works do not have

the ability to preserve history records. However, history records are important in estimating

signal attenuation statistics.

• Due to information exchange delay and node mobility, the distance between R and any of

its senders S ∈ SR,d changes very fast. The receiver R cannot guarantee the ‘current’ signal

map records are still valid in terms of representing signal attenuations between S and R.

• Signal map records at R only represent communications between R and its neighbors. There

are more pairs of nodes that can communicate directly via normal data transmission or con-

trol signaling that do not involve R. The signal map maintained by R that only involves R

is quite limited. Notice that in CPS, we no longer share signal map records to neighbors due

to their overwhelming bandwidth usage.

To be able to estimate link signal strength to overcome node mobilities, we propose to

leverage statistics from neighbor signal maps and historical signal maps. The goal, as we see in

Section 4.3.4, is to estimate an upper bound of the sum of signal attenuations and interference

plus noise of distance d away. With the help of spatial and temporal signal map records, our

estimation can be more accurate. Note that a vehicle should only consider signal map statistics

from conflicting neighbors.

As we will discuss in details in Section 4.3.9, we use Cantelli’s inequality to compute a

probabilistic upper bound of AR,d + ĨR,d. To use Cantelli’s inequality, we need sample mean,
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standard deviation. Therefore, we propose to let each neighbor share its sampled attenuation mean

and standard deviation together with distance d. Notice that the information sharing process is

selective in the sense that nodes will only share statistics for longer distances unless data for longer

distances are unavailable. If data for longer distance is indeed unavailable, nodes will share values

for shorter distances instead.

4.3.7 Interference plus noise sampling

For receiver R, it has a gPRK model parameter KpR,d
when its its sender is distance d away.

For each S ∈ SR,d, when S transmits, R also samples interference plus noise by inspecting SINR

and RSSI and solving the following system while it is receiving packets from S:






Pr,(R,d)(S,R) + ĨR,d = RSSI

Pr,(R,d)(S,R)

ĨR,d

= γR

(4.11)

In Equation 4.11, variables are in unit of Watt, and ĨR,d denotes noise plus interference at R.

Thus, the receiver R can create sample records for each gPRK model parameter KpR,d
. That is,

receiver R creates or appends a record in an interference table identified by KpR,d
and d locally.

When estimating quantile of ĨR,d, receiver R extracts interference plus noise samples identified by

KpR,d
and d and feeds interference samples to the quantile estimator in Section 4.3.9. Note that

all sampled interference plus noise samples will be removed if they are too old. We propose to

remove interference samples that were taken at locations that are now out side of the coverage of

its maximum exclusion region.

4.3.8 Exclusion region adaptation

In CPSP, we manage interference plus noise samples as well as its quantile values by dis-

tance. With variant transmission power levels, we employ a different scheme for exclusion region

adaptation. Since the goal of the controller design is to estimate quantile of interference plus noise

given a receiver R and sender receiver distance d, we do not differentiate nodes in exclusion re-

gion adaptation. Instead, we take all conflicting neighbors that are of the ‘same’ distance away
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as a whole and calculate their contribution to quantile of interference plus noise. We illustrate the

exclusion region adaptation process in Figure 4.8. Suppose the current gPRK model parameter for

Figure 4.8: Illustration of exclusion region adaptation in CPSP

R with distance d is KpR,d
, the corresponding quantile of interference plus noise is QĨR,d

ρR,d(Θn,R,d),

and the output of the ‘regulator’ in Figure 4.2 is ∆QĨR,d
ρR,d(Θn,R,d), receiver R adapts its exclusion

region as follows. The receiver R queries addresses of nodes that fall in the gray band as shown in

Figure 4.8 during the time from Θn,R,d to Θn+1,R,d. Please keep in mind that the width of the gray

band should be kept small, and nodes in the gray band generally may fall in the band at different

time slots. In our evaluation, we set the width of the gray band to be one meter. To enable quantile

estimation, R also records the data transmission power levels of each node in the gray band, and

their corresponding time slots and signal attenuation samples. Let us take C0 in Figure 4.8 as an

example. When C0 transmits a packet and if R overhears the packet, R decodes the packet and

makes a copy of the data transmission power levels C0 shared in the packet if the transmission

power levels are for time slots in which R received data packets. Notice that since C0 and R could

be quite far away from each other, we are referring to control packets here in general. With data

transmission power levels and signal attenuation samples, R computes an interference plus noise



105

for each overheard data transmission power level using the following formula:

ĨR,D(C0,R) = Pt,(R,D(C0,R)) −QAR,D(C0,R)
ρR,d

. (4.12)

Let ĨR,D(C0,R) denote the set of ĨR,D(C0,R) values computed from data transmission power levels

shared by C0. With all nodes in the gray band, and all such transmission power levels shared from

them, R can create a set of interference samples as follows:

Ĩgray band = {ĨR,D(c,R)|c falls in gray band}.

The receiver R then calculates QĨgray band+ĨR,d
ρR,d

(Θn,R,d). Then, R assumes the ρR,d quantile of inter-

ference plus noise is this amount. Now, if by considering all nodes in the gray band CPSP still

cannot address the adaptation amount ∆QĨR,d
ρR,d(Θn,R,d), R continues to increase K ′

pR,d
to a slightly

larger value until ∆QĨR,d
ρR,d(Θn,R,d) is accounted for. This explains the situation of exclusion region

increase. The exclusion region decrease case is similar in the sense that R considers smaller new

K ′
pR,d

values as compared to the original KpR,d
.

4.3.9 Nonparametric quantile estimation

The goal of interference quantile estimation is to create a mapping σ : (d,KpR,d
) → QĨR,d

ρR,d

such that for each pair of distance d and gPRK model parameter KpR,d
, there is a single quantile

value of interference plus noise for it. This mapping will be used in exclusion adaptations and

transmission power recommendation calculations. Notice that there is no time slot involved in

this association since this mapping is evolving and represents the latest estimation. That is, we

incorporate history estimation results into our latest samples and update our estimation.

In this chapter, we use Cantelli’s inequality to provide one-sided quantile estimation for

random variables. Give a random variable X and a real number k > 0, the Cantelli’s inequality

implies

Pr
(
X − µ(X) ≥ k

)
≤ σ(X)2

k2 + σ(X)2
. (4.13)
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where µ(X) denotes expectation, and σ(X) denotes standard deviation of the random variable X .

For quantile parameter ρR,d, we solve the following equation for k.

σ(X)2

k2 + σ(X)2
= ρR,d. (4.14)

Once we get the value for k, the ρR,d quantile value for random variable X is obviously k+µ(X).

4.4 Evaluation

We use the same experiment settings as we did in Chapter 3 for urban scenario as depicted

in Figure 3.11. We compare our experiment results to CPS in this section. In our evaluation, we

set pR,d as 90% with its corresponding expected SINR guarantee γ0
R,d as 18.77 dB for all receivers.

4.4.1 Metrics

In the following, we list out the metrics we will use to evaluate CPSP in our evaluation.

• PDR. The goal of CPSP is to show how well CPSP can guarantee probabilistic packet suc-

cessful decode guarantee compared to CPS. As a first step, we compare link-level reliability

as we did before, namely PDR.

• SINR. As we discussed, we have transformed our problem into SINR guarantee. To better

understand our solution, we need to show the SINR values while packet reception, regardless

of success or failure of packet reception.

• Concurrency. Concurrency is defined as the number of nodes that transmit concurrently in

a time slot. Due to more strict requirements on packet reception probability, we expect some

loss of concurrency.

• Transmission power. We are only interested in data transmission power in this section. We

have set our normal transmission power as 16 dBm.

• ĨR,d quantile bound failure rate. We evaluate the percentage of ĨR,d quantile bound failure

as a way to show if our fundamental assumption of interference upper bound holds.

4.4.2 CPSP behaviors

In this section, we evaluate the SINR guarantee while nodes are receiving packets. We

record SINR values whenever a packet is been received, regardless of packet reception success or
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failure. Figure 4.9 shows the difference of the SINR value for each packet η , i.e., γR,d(η), and the

target SINR value γ0
R,d. In our evaluation, γ0

R,d = 18.77 dBm. As the figure shows, most of the

SINR values are above the target SINR value γ0
R,d. Notice that the extremely large SINR values

are because of very short distance between a sender and its receiver. Our calculation shows the

percentage of γR,d(η)− γ0
R,d < 0 is only 1.571%. We also show the effectiveness of probabilistic

CPSP
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Figure 4.9: SINR guarantee in CPSP

upper bound of ĨR,d in Figure 4.10. In our evaluation, we let ρR,d = 0.95. Figure 4.10 shows

around 93% of SINR samples are under the quantile bound. Notice that data shown in Figure 4.10

is calculated by QĨR,d
ρR,d minus measured ĨR,d, thus positive difference means effective bound. In
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Figure 4.10: Probabilistic upper bound of ĨR,d in CPSP
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addition, Figure 4.11 shows the transmission power level used by node in data transmission. Notice

that in our simulation, transmission power levels are integer levels. The actual transmission power

in dBm is the transmission power level plus 16 dBm. We notice that more than 50% of time, normal

data transmission power is good enough to guarantee per-packet reception probability as indicated

by power level zero in Figure 4.11. However, to overcome unexpected interference due to network

dynamics, there are still a large portion of situations where nodes do have to use higher than normal

transmission power levels to guarantee packet reception probability. Notice the bottom part of the

CDF where power level is negative. This represents situations where a transmitter’s receivers are

all quite close to itself. As a result, even the standard 16 dBm transmission power is more than

enough to guarantee packet reception probability. The probability is quite low, and can represent

sparse network situations. In our simulation, this usually happens at places where vehicles are

born. As vehicles move, they tend to choose potentially effective roads in the network as decided

by SUMO’s routing algorithm. Such ‘sparse network situation’ soon becomes rare since vehicles

all choose good roads and are close to each other.
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Figure 4.11: Transmission power levels in CPSP

4.4.3 Comparison with CPS

In this section, we compare two key metrics in CPS with those in CPSP. In this section, we

set PDR requirement as 90%. When PDR is 90%, the averaged SINR is 18.77dBm. Figure 4.12
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shows the CDF of link reliability for both CPS and CPSP. We see that in CPS, there are more than

10% of links whose link reliability requirement cannot be met. In CPSP, while link reliability is

met, the achieved link reliability is much higher than application requirement. Figure 4.13 shows

the concurrency comparison between CPS and CPSP. We can clearly see the performance loss

compared to CPS in terms of concurrency. We also notice that the number of time slots in which

there is only one transmitter is larger. Notice that, in our concurrency comparison study, we pair

time slots in CPS and CPSP, making sure the comparison is fair.
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Figure 4.12: PDR comparison between CPS and CPSP
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Figure 4.13: Concurrency comparison between CPS and CPSP
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4.5 Concluding remarks

This chapter shows that with MAC layer scheduling and per-packet power control, PRK

based scheduling framework is able to achieve short-term link reliability in inter-vehicle commu-

nication networks. Due to asymmetric wireless channel, non-deterministic concurrent transmitter

set and distributed power assignment policy, we conservatively protect packet receptions, thus re-

sulting in lower network concurrency. CPSP has no assumptions for wireless channel model, radio

model as well as underlying networks. As a result, it is more realistic than those theoretical analysis

works.
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CHAPTER 5: CONCLUSION

In this dissertation, we present our research accomplishments in reliable communication in

traditional wireless sensor networks and more challenging inter-vehicle communication networks.

We employ the PRK interference model for accurate interference relation identification and design

a distributed controller to control average link communication reliability in traditional wireless

sensor networks. We also give reasons why using the PRK interference model in vehicular net-

works can be less feasible. We then propose a variant of the PRK interference model called gPRK

interference model. We then design a distributed MAC scheduling protocol using the gPRK model.

With average link reliabilities guaranteed, we further design a joint power control and scheduling

solution to provide more challenging per-packet reception probability guarantee. By achieving per-

packet reception probabilities, we expect our techniques described in this dissertation to be a basis

for real-time communication solutions that can further be specifically tailored for each wireless

networked sensing and control systems for performance optimization.
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Predictably reliable communication in wireless networked sensing and control systems

(WSC) is a basic enabler for performance guarantee. Yet current research efforts are either fo-

cus on maximizing throughput or based on inaccurate interference modeling methods, which yield

unsatisfactory results in terms of communication reliability. In this dissertation, we discuss tech-

niques that enable reliable communication in both traditional wireless sensor networks and highly

mobile inter-vehicle communication networks. We focus our discussion on traditional wireless

sensor networks in Chapter 2 where we discuss mechanisms that enable predictable and reliable

communications with no centralized infrastructures. With the promising results in Chapter 2, we

extend our methods to inter-vehicle communication networks in Chapter 3. We focus on the broad-

cast communication paradigm and the unique challenges in applying the PRK interference model

into broadcast problems in highly mobile inter-vehicle communication networks. While Chapter 2

and Chapter 3 focus on average reliability, we switch our problem to a more challenging aspect:

guaranteeing short-term per-packet reception probability in Chapter 4.

Specifically, we describe the PRKS protocol in Chapter 2 which considers unicast trans-

mission paradigm in traditional static wireless sensor networks. PRKS uses the PRK interference

model as a basis for interference relation identification that captures characteristics of wireless

communications. For communication reliability control, we design a controller that runs at each

link receiver and is able to control the average link reliability to be no lower than an application

requirement as well as minimizing reliability variation. We further evaluate PRKS with extensive
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ns-3 simulations. The CPS protocol described in Chapter 3 considers an one-hop broadcast prob-

lem in multi-hop inter-vehicle communication networks. We analyze the challenges of applying

the PRK model in this particular setting and propose an approximated PRK model, i.e., gPRK

model, that addresses the challenges. We further design principles that CPS uses to instantiate the

gPRK model in inter-vehicle communications. We implement the CPS scheduling framework in

an integrated platform with SUMO and ns-3 to evaluate our design.

In Chapter 4, we conservatively estimate the background interference plus noise while

nodes are receiving packets. In the meantime, receivers decide minimum power levels their sender

should use and feedback their decisions to their senders. Senders fuse feedbacks and choose a

power level that guarantees expected packet reception probability at each receivers’ side. We no-

tice in our evaluation that guaranteeing short-term reliability causes extra concurrency loss.
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