2,539 research outputs found

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Hierarchical cluster guided labeling: efficient label collection for visual classification

    Get PDF
    2015 Summer.Visual classification is a core component in many visually intelligent systems. For example, recognition of objects and terrains provides perception during path planning and navigation tasks performed by autonomous agents. Supervised visual classifiers are typically trained with large sets of images to yield high classification performance. Although the collection of raw training data is easy, the required human effort to assign labels to this data is time consuming. This is particularly problematic in real-world applications with limited labeling time and resources. Techniques have emerged that are designed to help alleviate the labeling workload but suffer from several shortcomings. First, they do not generalize well to domains with limited a priori knowledge. Second, efficiency is achieved at the cost of collecting significant label noise which inhibits classifier learning or requires additional effort to remove. Finally, they introduce high latency between labeling queries, restricting real-world feasibility. This thesis addresses these shortcomings with unsupervised learning that exploits the hierarchical nature of feature patterns and semantic labels in visual data. Our hierarchical cluster guided labeling (HCGL) framework introduces a novel evaluation of hierarchical groupings to identify the most interesting changes in feature patterns. These changes help localize group selection in the hierarchy to discover and label a spectrum of visual semantics found in the data. We show that employing majority group-based labeling after selection allows HCGL to balance efficiency and label accuracy, yielding higher performing classifiers than other techniques with respect to labeling effort. Finally, we demonstrate the real-world feasibility of our labeling framework by quickly training high performing visual classifiers that aid in successful mobile robot path planning and navigation

    Percepción Activa multi-robot para la cobertura rápida y eficiente de escenas.

    Get PDF
    The efficiency of path-planning in robot navigation is crucial in tasks, such as search-and-rescue and disaster surveying, but this is emphasised even more when considering multi-rotor aerial robots due to the limited battery and flight time. In this spirit, this Master Thesis proposes an efficient, hierarchical planner to achieve a comprehensive visual coverage of large-scale outdoor scenarios for small drones. Following an initial reconnaissance flight, a coarse map of the scene gets built in real-time. Then, regions of the map that were not appropriately observed are identified and grouped by a novel perception-aware clustering process that enables the generation of continuous trajectories (sweeps) to cover them efficiently. Thanks to this partitioning of the map in a set of tasks, we are able to generalize the planning to an arbitrary number of drones and perform a well-balanced workload distribution among them. We compare our approach to an alternative state-of-the-art method for exploration and show the advantages of our pipeline in terms of efficiency for obtaining coverage in large environments.<br /

    Multi-robot active perception for fast andefficient scene reconstruction.

    Get PDF
    The efficiency of path-planning in robot navigation is crucial in tasks, such as search-and-rescue and disaster surveying, but this is emphasised even more when considering multi-rotor aerial robots due to the limited battery and flight time. In this spirit, this Master Thesis proposes an efficient, hierarchical planner to achieve a comprehensive visual coverage of large-scale outdoor scenarios for small drones. Following an initial reconnaissance flight, a coarse map of the scene gets built in real-time. Then, regions of the map that were not appropriately observed are identified and grouped by a novel perception-aware clustering process that enables the generation of continuous trajectories (sweeps) to cover them efficiently. Thanks to this partitioning of the map in a set of tasks, we are able to generalize the planning to an arbitrary number of drones and perform a well-balanced workload distribution among them. We compare our approach to an alternative state-of-the-art method for exploration and show the advantages of our pipeline in terms of efficiency for obtaining coverage in large environments.<br /

    Visual summaries for low-bandwidth semantic mapping with autonomous underwater vehicles

    Get PDF
    A fundamental problem in autonomous underwater robotics is the high latency between the capture of image data and the time at which operators are able to gain a visual understanding of the survey environment. Typical missions can generate imagery at rates orders of magnitude greater than highly compressed images can be transmitted acoustically, delaying that understanding until after the robot has been recovered and the data analyzed. We present modifications to state-of-the-art online visual summary techniques that enable an autonomous robot to select representative images to be compressed and transmitted acoustically to the surface ship. These transmitted images then serve as the basis for a semantic map which, combined with scalar navigation data and classification masks, can provide an operator with a visual understanding of the survey environment while a mission is still underway
    • …
    corecore