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Abstract— A fundamental problem in autonomous underwa-
ter robotics is the high latency between the capture of image
data and the time at which operators are able to gain a visual
understanding of the survey environment. Typical missions
can generate imagery at rates orders of magnitude greater
than highly compressed images can be transmitted acoustically,
delaying that understanding until after the robot has been
recovered and the data analyzed. We present modifications to
state-of-the-art online visual summary techniques that enable
an autonomous robot to select representative images to be com-
pressed and transmitted acoustically to the surface ship. These
transmitted images then serve as the basis for a semantic map
which, combined with scalar navigation data and classification
masks, can provide an operator with a visual understanding of
the survey environment while a mission is still underway.

I. INTRODUCTION

Seventy percent of the Earth’s surface is covered by
water, below which lie diverse ecosystems, rare geological
formations, important archeological sites, and a wealth of
natural resources. Understanding and quantifying these areas
presents unique challenges for the robotic imaging platforms
required to access such remote locations. Low-bandwidth
acoustic communications prevent the transmission of images
in real-time, while the large volumes of data collected often
exceed the practical limits of exhaustive human analysis. As
a result, the paradigm of underwater exploration has a high
latency of understanding between the capture of image data
and the time at which operators are able to gain a visual
understanding of the survey environment.

A robotic vehicle capturing one still image every few
seconds can easily generate thousands of images within
a matter of hours. This sheer volume of data presents a
formidable obstacle to any individual attempting to gain an
understanding of the survey environment. Often, when a
vehicle operator obtains a dataset for the first time, their
instinct is to quickly scan thumbnails of the images for
any that “pop out.” While this can be useful, it is not
necessarily the best or fastest way to obtain images that
“represent” the data in a meaningful way. In this work, we
explore the use of navigation summaries [1], [2], [3] to obtain
a small subset of images that can serve as the basis for
low-bandwidth semantic maps to give an operator a fast,
high-level understanding of the survey environment while
a mission is still underway.
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II. RELATED WORK
A. Underwater Communications

Without a physical link to the surface, AUVs rely on
acoustic signals to communicate with shipboard operators.
These channels have very limited bandwidth with throughput
on the order of tens of bytes per second depending on range,
packet size, other uses of the channel (for instance, naviga-
tion sensors), and latencies due to the speed of sound in water
[4], [5]. While much higher data rates have been achieved
using underwater optical modems for vehicle control [6] and
two-way communication [7], these systems are limited to
ranges on the order of 100 meters and are inadequate for
long-range communication [8]. In the absence of mission-
time operator feedback, an AUV must either navigate along
a preprogrammed course or use the data it collects to alter
its behavior. Examples of the latter, termed adaptive mission
planning, include detecting mines so potential targets can
be re-surveyed in higher-resolution [9] and using chemical
sensors to trace plumes back to their source [10], [11]. The
overarching implication is that, with the exception of low-
bandwidth status messages, data collected by an AUV is not
seen by operators until after the mission is completed and
the vehicle recovered.

B. Clustering Data
Clustering can be viewed as an unsupervised compression

strategy that allows multidimensional data to be quantized
to one of several discrete distributions by defining a distance
metric between samples and minimizing some measure of
that distance. We can think of each image as a data point
characterized by some distribution of features, such as a
quantized descriptor (which itself could have been obtained
through clustering). One of the most well-known cluster-
ing algorithms is the K-means algorithm which seeks to
find a set of cluster centers that minimize the within-class
distances between each cluster center and the members of
its representative class [12]. While this method has been
extremely useful in generating texton dictionaries for texture
analysis [13], [14], the fact that the cluster centers are not
guaranteed to occur at a data point makes mapping back
to a single representative image for each class difficult. A
similar algorithm, k-medoids, only considers data points as
potential cluster centers, and is more useful for generating
representative images. Both of these methods require the
number of cluster to be set a priori.

Other methods seek to determine the number of clusters
based on the natural structure of the data. Affinity propa-
gation accomplishes this by picking “exemplars” that are



suggested by nearby data points [15] and has found use
in building texton vocabularies [16]. Hierarchical methods
have also been used to learn objects [17], scenes [18], and
underwater habitats [19] based on topic models using Latent
Dirichlet Allocation (LDA) [20]. However, a drawback of
all methods mentioned thus far is that they operate upon a
static dataset. This “offline” approach is ill-suited to real-time
robotic imaging because it offers no way to characterize the
dataset until after all the data has been collected.

Clustering data in an “online” fashion provides two im-
portant benefits. Firstly, it allows data to be processed
continuously throughout the mission, reducing the overall
computational load. Secondly, at any point in time it provides
a summary of the imagery captured thus far by the vehicle. A
drawback to online methods is that they offer less guarantees
of stability and are ultimately dependent upon the order
in which images are presented to the algorithm [21]. The
worst-case scenario for online approaches would be for the
most extreme data points to occur first, followed by interior
points which become poorly represented. Luckily, natural
underwater environments are highly redundant with habitat
domains that persist across many frames. One possible
approach uses incremental clustering of topic models using
LDA [3]. We are particularly interested in recent work on
navigation summaries [1], [2] which operate on the concept
of “surprise.”

C. Surprise-Based Summaries

An event can be said to be “surprising” because it happens
unexpectedly. The idea of what is expected can be modeled
as a probability distribution over a set of variables and
considered as prior knowledge about the world. When a
novel event occurs, it augments this body of knowledge and
creates a slightly different posterior knowledge of the world.
If the amount of knowledge added by any single event is
large enough, that event can be said to be unexpected and
thus is “surprising.”

This concept has been formalized in a Bayesian framework
as the difference between the posterior and prior models of
the world [22]. For measuring this difference, the Kullback-
Leibler divergence, or relative entropy, was shown to corre-
late with an attraction of human attention,

dKL(p ‖ q) =
∑
x

p(x)log
p(x)

q(x)
(1)

where p(x) is the posterior model, q(x) is the prior model,
and x is some observed variable over which distributions can
be computed. Rather than modeling the prior knowledge Π−

as a single distribution P (F ) over a set of features F , we
follow [1] and model it over each member of summary set
S containing M members.

Π− = {P (F |S1), · · ·P (R|SM )} (2)

The posterior knowledge Π+ is simply the union of prior
knowledge with the new observation Z

Fig. 1. Visual illustration of surprise, defined as the distance of the nearest
member of set S to Z measured by the KL divergence. The surprise is a
measure of information gain from a new observation based on a summary
set of existing hypotheses.

Π+ = {P (F |S1), · · ·P (R|SM ), P (F |Z)} (3)

The set theoretic surprise ξ can be defined as the Hausdorff
distance between the posterior and prior distribution using
the KL divergence as a distance metric [1]. The Hausdorff
metric is a measure of the distance between two sets based on
the greatest possible difference between one point in the first
set to the nearest point on the other sets. Since the prior and
posterior sets differ only by Z, the surprise can be simply
expressed as the KL distance between observation Z and
the nearest summary image in S. This distance is illustrated
graphically in Figure 1.

ξ(Z|S) = inf
π−∈Π−

dKL
(
P (F |Z) ‖ π−

)
(4)

When a new observation’s surprise exceeds a threshold, it
is added to the summary set. The threshold is generally set
as the lowest value of surprise in the current summary. That
member of the old summary set with the lowest surprise is
then removed and replaced by the new observation, and the
surprise threshold set to the next least-surprising member
of the summary set. In this manner, a temporally global
summary of the images is maintained at all times [1].

III. MODIFIED VISUAL SUMMARIES FOR
SEMANTIC MAPPING

A. Basic Implementation

We implemented the aforementioned navigation summary
on a 3000+ image dataset collected by the towed camera
system SeaSLED in the Marguerite Bay area of the west
Antarctic Peninsula in December 2010. The system was
towed from a ship at an average of 3 meters altitude from
the seafloor. However, due to ship motion and unpredictable
topography, there is a large variation in the altitude, much
more than an AUV usually might experience. We truncated
the data to only include about 2500 images captured at
altitudes between 1.5 and 4 meters, approximately the range
within which additive scattering can be neglected [23].

For each image, we computed 1000 keypoints and quan-
tized each to one of 14 binary QuAHOG patterns [23]. A
global histogram was then computed for the entire image.
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Fig. 2. Surprise as a function of image number. The threshold of surprise
grows as more images are incorporated into the summary set.

Considering that images are captured every 3 seconds, the
total mission time to capture 2800 images is over 2 hours.
With the current state of the art in acoustic image trans-
mission being approximately one full-resolution 1-megapixel
image every 15 minutes [24], we estimate that about 8 images
could be transmitted back within the course of a mission.
Therefore, we set the summary set size to 8.

The summary set is initialized with the first 8 images and
their corresponding surprise values are set to the smallest
surprise measured relative to the set of images before it.
Progress then continues throughout the rest of the data until
the surprise threshold is exceeded by a novel image. When
this happens, the novel surprising image is incorporated into
the summary set, the least surprising image removed, and
the surprise threshold augmented to the new lowest surprise
value within the set as previously described. Figure 2 plots
the surprise value and threshold throughout the course of the
mission. As more of the environment is surveyed, the more
surprising a new image must be to become incorporated into
the summary set. The set of 8 summary images is shown
in Figure 3. Images correspond to a spectrum of sandy and
rocky areas.

There are several drawbacks to this approach that make it
ill-suited in its current form for picking images to transmit
during a mission. First, the summary represents a dynamic
set of images, so there is no guarantee that an image
that is transmitted will remain a member of the summary
set throughout the rest of the mission. Second, simply
transmitting images based on the highest “surprise” value
can result in a handful of “outlier” images that are not
representative of the dominant habitats in a survey. Lastly,
if our goal is to use these summary images as the bases
for building a semantic map to spatially characterize the
survey environment, we need a means of reliably classifying
non-summary images online as well. In the next section, we
discuss several modifications to the online summary scheme
of [1], [2] that enable mission-time visual feedback using
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Fig. 3. The 8 summary images produced by the algorithm.

low-bandwidth semantic maps.

B. Modified Visual Summaries

Our first modification is to represent each non-summary
image with a member of the summary set. Assuming that
we have navigation data available to be transmitted as well,
we can combine these representations with the approximate
vehicle position to create spatial coverage maps based on the
summary set. Intuitively, a non-summary image should be
best represented by the summary image that is most similar.
However, our current definition of surprise is not a true
distance metric because it lacks symmetry. Therefore, we
follow [2] and use a symmetric measure of surprise

dKL,sym(p ‖ q) =
1

2

(
dKL(p ‖ q) + dKL(q ‖ p)

)
. (5)

Representing a non-summary image by its nearest neigh-
boring summary in this way can be thought of as minimizing
the surprise one would have when looking through all
the non-summary images represented by a given summary
image.

We next must determine which summary images to trans-
mit. Obviously, it is desirable to transmit the first image as



soon as possible to minimize the latency of understanding
for the operator. However, early in the mission the surprise
threshold grows rapidly as the algorithm determines which
images best represent the data, as seen in Figure 2. Thus, we
propose to wait until the surprise threshold does not change
for a specified number of images, implying that the vehicle is
imaging consistent terrain that could be represented well by
a single image. Using the summary set size M as a threshold
is a simple and natural choice.

For subsequent images, we assume that the vehicle will
be ready to transmit another image after a set number of
frames. If imagery is captured every 3 seconds and can be
transmitted every 15 minutes, this means that one summary
image can be transmitted approximately every 300 frames.
We would like to choose a summary image that is different
enough from the previously transmitted summary images
while at the same time represents enough non-summary
images to make it a worthwhile choice for a map basis.
Figure 4 illustrates two extreme cases. If the summary set
that represents the most non-summary images is chosen,
the blue circle, there is no guarantee that it is different
enough from the previously transmitted summary images.
As before, we can formulate our choice to minimize the
surprise one would have when looking through the other
summary images. We are effectively choosing a summary
subset within the summary set. However, simply choosing
the summary image that minimizes this surprise does not
guarantee that it represents enough non-summary images to
make it a useful basis for the map. Hence, we select the
summary set that both minimizes the Haussdorff distance
when the summary set is partitioned into subsets as well as
represents enough non-summary images to exceed a given
threshold. As before, we simply use the summary set size
M as a minimum acceptable value.

Selecting good summary images to transmit is important
because these images will be used to represent the entire
dataset for the duration of the mission. Furthermore, this
means that, as new summary images are added to the
summary set, previously transmitted summary images should
not be removed from the summary set given the high cost of
transmitting an image. Subsequently, after a summary image
is transmitted, it becomes “static,” as opposed to the other
“dynamic” summary images. To ensure this at runtime, both
the surprise value and the number of non-summary images
that “static” summary image represents are set to infinity.

Online summary methods do not require distances to
be recomputed for all existing data points when new data
appears which is one quality that makes them attractive
for power-limited underwater robots. Thus, when a new
summary is added to the set, we would rather not lose the
information we have gained by simply removing the least-
surprising summary image and the non-summary images that
it represents. Instead, we propose to merge it with the nearest
summary image so that it and its non-summary images all
become non-summary images represented by the nearest
summary image.

In practice, we found that straightforward merging can

Fig. 4. Visual illustration of our symmetric surprise-based method for
choosing summary image to transmit. The grey square indicates a previously
transmitted or “static” set. Circles indicate untransmitted or “dynamic”
sets whose size is proportional to the number of non-summary images
they represent. Choosing the largest summary set, the blue circle, is not
guaranteed to full characterize the diversity within the dataset. Choosing
the summary set that minimizes the Haussdorff distance, the red circle and
lines, between the subsequent classes will often pick the most surprising
summary image, but this set is not guaranteed to represent enough non-
summary images to contribute usefully to the semantic map. We elect to
use the Haussdorff distance, but threshold the minimum number of non-
summary images, shown by the green circle and lines.

Fig. 5. Symmetric surprise between all images (left) and symmetric
surprise between all images (right) using only the surprise values from their
representative summary set.

result in summary images representing large groups of non-
summary images being absorbed by new summary images
that do not represent many non-summary images. Such
an occurrence is less than ideal for creating consistent
maps. Thus, we advocate a greedy approach whereby, when
merging two summary images, the one that represents more
non-summary images remains a summary image. In the
case of the least surprising summary image being chosen,
the surprise threshold will not increase. To show that our
overall approach preserves distance information, we plot the
symmetric surprise distance between all 3000+ images in
Figure 5. At left, distances have been calculated between
each image. At right, the distances for each image have been
replaced by their representative summary image’s distances.
Remarkably, the structure within the dataset is preserved
quite well given the almost 30,000:1 compression ratio.

C. Generating Semantic Maps

We have described modifications which enable us to select
summary images to transmit that characterize the diversity in



the dataset and will not change as additional summary images
are added and merged. After the first image is transmitted
and received, an operator has an initial understanding of the
survey environment. After the second image is transmitted
and received, additional scalar data containing navigation and
classification information can be compressed and transmitted
as well, providing the operator with ample information to be-
gin to construct a spatial map of the survey environment. The
classification masks exhibit high redundancy and covariance
so they can be compressed at high rates. These data can be
transmitted using very little bandwidth with the techniques
presented in [25] and [24].

We implemented this new approach on a 2800 image
dataset collected by the SeaBED AUV [26] in 2003 in the
Stellwagen Marine Sanctuary. The survey consisted of mul-
tiple track lines over various habitats composed of boulders,
rubble, sand, and mud. Imagery was captured every 3 sec-
onds from approximately 3 meters altitude. Figure 6 shows
the resulting progressive semantic maps created after each
subsequent image and corresponding data are transmitted.
Because the transmitted summary images become static, to
allow freedom in the dynamic summary images we set the
summary set size M to approximately twice the number
of images we anticipate to transmit, in this case 16. The
first image (red) was transmitted when the surprise threshold
stabilized after 147 images. Each subsequent transmitted
image was chosen after 300 frames had elapsed, simulating a
realistic 15 minute transmission interval [24]. The first map
is based on the first (red) and second (green) images, the
second on the first three, and so on, until all 9 images are
used.

Some of these classes are similar and the operator may
wish to merge them for visual clarity. In Figure 7 the 9
transmitted images have been heuristically merged into 5
distinct classes: (from top to bottom at right) sand, piled
boulders, lone boulders in sand, mud, and rubble. From the
complete mosaic and the bathymetric map, it is clear that
the piled boulders correspond to the tops of ridges. Depths
in the bathymetric map range from 60 meters (warmer hues)
to 70 meters (colder hues). Between these ridges are sandy
areas, all of which are bordered by mud and smaller rubble.

This level of dataset understanding would be extremely
valuable for an operator to possess during a mission. For
instance, if the boulder fields were of particular interest to a
scientist, the vehicle could be issued a redirect command
to resurvey that area at higher resolution. Conversely, if
a particular substrate of interest is not being imaged, the
mission can be terminated and the vehicle recovered and
relocated to another area. Furthermore, upon recovery of
the vehicle, the operator has a fully classified dataset with
additional summary images as well. The non-summary im-
ages represented by each summary images can be browsed
to check the class validity. Several randomly selected non-
summary images have been chosen from each of the 5
summary sets in Figure 7 and are shown in Figure 8.

Fig. 6. Semantic maps created after each subsequent image is transmitted
(top) with summary images and respective color codes (bottom).

Fig. 7. Photomosaic (left) and bathymetry (middle left) of the entire
mission. The final semantic map (middle right) using 9 images which have
been heuristically merged into 5 distinct classes (right) and color coded.



Fig. 8. Example imagery from each of the five heuristically merged classes.

IV. DISCUSSION

This work makes contributions to the field of autonomous
underwater robotics by describing a framework that can
be used to reduce the “latency of understanding,” or the
time delay between when an image is captured and when
it is finally “understood” by an operator. This latency is
propagated from two sources: first, from the low-bandwidth

of the acoustic communication channel which greatly re-
stricts the throughput of data; second, from the large volume
of image data that must be analyzed. The second source
has been addressed by numerous automated classification
algorithms designed to annotate image data in an offline
post-processed sense. The first source has been addressed by
recent compression work allowing a small set of images to be
transmitted over the course of a mission. We have addressed
both of these sources by describing a lightweight framework
designed to run in real time aboard a robotic vehicle that can
produce environmental maps based on a subset of summary
images.

Our approach is unique because it demonstrates that a
simple, forward-mapped pattern vocabulary can be used
to produce meaningful results without relying on complex
descriptors that must be first learned and then subsequently
quantized into a dictionary [23]. Furthermore, this work
augments the visual summary literature under the assumption
that summary images, navigation data, and classification
masks can all be transmitted back at some rate during a mis-
sion. While existing techniques approach the visual summary
problem strictly as a visual summary problem, we approach
it from a compression standpoint in the context of a robot
vehicle’s ability to communicate a high-level understanding
of its environment given the limitations of acoustic modems.
Our work represents an enhancement of the capabilities of
robotic vehicles to explore new environments and improve
the quality of operator involvement during vehicle missions.

We hope to implement this framework on a physical
embedded system aboard a vehicle. One realization is to
operate directly off the image buffer in the sealed camera
pressure housing. If images were processed and stored in the
same housing as the camera, this scenario would limit the
required information transfer between pressure housings on
vehicles, which are often highly modular, only sharing com-
pressed summary images and the accompanying semantic
map. This implementation also makes the camera unit more
modular and applicable to other monitoring applications such
as moored or cabled observatories that are continuously
collecting image data where storage constraints become
problematic over long timescales.

Another way to utilize acoustic modems and image com-
pression techniques to reduce the latency of understanding
is to continuously transmit a low-bitrate descriptor for each
image as it is captured. This concept has roots in the
mobile visual search paradigm [27], [28] where a descriptor
is sent to a server in place of the query image itself. In
this scenario, the online clustering (or even repeated offline
clusterings) would be performed on the ship where power
and computational resources can be virtually unlimited and
thus a better set of representative cluster centers can be
obtained. The vehicle can then be queried to compress and
transmit these representative images during the mission.
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