25,981 research outputs found

    Efficient And Secure Key Distribution Protocol For Wireless Sensor Networks

    Get PDF
    Modern wireless sensor networks have adopted the IEEE 802.15.4 standard. This standard defines the first two layers, the physical and medium access control layers; determines the radio wave used for communication, and defines the 128-bit advanced encryption standard (AES-128) for encrypting and validating transmitted data. However, the standard does not specify how to manage, store, or distribute encryption keys. Many solutions have been proposed to address this problem, but the majority are impractical in resource-constrained devices such as wireless sensor nodes or cause degradation of other metrics. Therefore, we propose an efficient and secure key distribution protocol that is simple, practical, and feasible to implement on resource-constrained wireless sensor nodes. We conduct simulations and hardware implementations to analyze our work and compare it to existing solutions based on different metrics, such as energy consumption, storage overhead, key connectivity, replay attack, man-in-the-middle attack, and resiliency to node capture attack. Our findings show that the proposed protocol is secure and more efficient than other solutions

    Development of mobile agent framework in wireless sensor networks for multi-sensor collaborative processing

    Get PDF
    Recent advances in processor, memory and radio technology have enabled production of tiny, low-power, low-cost sensor nodes capable of sensing, communication and computation. Although a single node is resource constrained with limited power, limited computation and limited communication bandwidth, these nodes deployed in large number form a new type of network called the wireless sensor network (WSN). One of the challenges brought by WSNs is an efficient computing paradigm to support the distributed nature of the applications built on these networks considering the resource limitations of the sensor nodes. Collaborative processing between multiple sensor nodes is essential to generate fault-tolerant, reliable information from the densely-spatial sensing phenomenon. The typical model used in distributed computing is the client/server model. However, this computing model is not appropriate in the context of sensor networks. This thesis develops an energy-efficient, scalable and real-time computing model for collaborative processing in sensor networks called the mobile agent computing paradigm. In this paradigm, instead of each sensor node sending data or result to a central server which is typical in the client/server model, the information processing code is moved to the nodes using mobile agents. These agents carry the execution code and migrate from one node to another integrating result at each node. This thesis develops the mobile agent framework on top of an energy-efficient routing protocol called directed diffusion. The mobile agent framework described has been mapped to collaborative target classification application. This application has been tested in three field demos conducted at Twentynine palms, CA; BAE Austin, TX; and BBN Waltham, MA

    A Cross-Layer Approach to Minimize the Energy Consumption in Wireless Sensor Networks

    Get PDF
    Energy efficiency represents one of the primary challenges in the development of wireless sensor networks (WSNs). Since communication is the most power consuming operation for a node, many current energy-efficient protocols are based on duty cycling mechanisms. However, most of these solutions are expensive from both the computational and the memory resources point of view and; therefore, they result in being hardly implementable on resources constrained devices, such as sensor nodes. This suggests to combine new communication protocols with hardware solutions able to further reduce the nodes' power consumption. In this work, a cross-layer solution, based on the combined use of a duty-cycling protocol and a new kind of active wake-up circuit, is presented and validated by using a test bed approach. The resulting solution significantly reduces idle listening periods by awakening the node only when a communication is detected. Specifically, an MAC scheduler manages the awakenings of a commercial power detector connected to the sensor node, and, if an actual communication is detected, it enables the radio transceiver. The effectiveness of the proposed cross-layer protocol has been thoroughly evaluated by means of tests carried out in an outdoor environment

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Information Centric Networking in the IoT: Experiments with NDN in the Wild

    Get PDF
    This paper explores the feasibility, advantages, and challenges of an ICN-based approach in the Internet of Things. We report on the first NDN experiments in a life-size IoT deployment, spread over tens of rooms on several floors of a building. Based on the insights gained with these experiments, the paper analyses the shortcomings of CCN applied to IoT. Several interoperable CCN enhancements are then proposed and evaluated. We significantly decreased control traffic (i.e., interest messages) and leverage data path and caching to match IoT requirements in terms of energy and bandwidth constraints. Our optimizations increase content availability in case of IoT nodes with intermittent activity. This paper also provides the first experimental comparison of CCN with the common IoT standards 6LoWPAN/RPL/UDP.Comment: 10 pages, 10 figures and tables, ACM ICN-2014 conferenc

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Optimal Compression and Transmission Rate Control for Node-Lifetime Maximization

    Get PDF
    We consider a system that is composed of an energy constrained sensor node and a sink node, and devise optimal data compression and transmission policies with an objective to prolong the lifetime of the sensor node. While applying compression before transmission reduces the energy consumption of transmitting the sensed data, blindly applying too much compression may even exceed the cost of transmitting raw data, thereby losing its purpose. Hence, it is important to investigate the trade-off between data compression and transmission energy costs. In this paper, we study the joint optimal compression-transmission design in three scenarios which differ in terms of the available channel information at the sensor node, and cover a wide range of practical situations. We formulate and solve joint optimization problems aiming to maximize the lifetime of the sensor node whilst satisfying specific delay and bit error rate (BER) constraints. Our results show that a jointly optimized compression-transmission policy achieves significantly longer lifetime (90% to 2000%) as compared to optimizing transmission only without compression. Importantly, this performance advantage is most profound when the delay constraint is stringent, which demonstrates its suitability for low latency communication in future wireless networks.Comment: accepted for publication in IEEE Transactions on Wireless Communicaiton

    Multihop clustering algorithm for load balancing in wireless sensor networks

    Get PDF
    The paper presents a new cluster based routing algorithm that exploits the redundancy properties of the sensor networks in order to address the traditional problem of load balancing and energy efficiency in the WSNs.The algorithm makes use of the nodes in a sensor network of which area coverage is covered by the neighbours of the nodes and mark them as temporary cluster heads. The algorithm then forms two layers of multi hop communication. The bottom layer which involves intra cluster communication and the top layer which involves inter cluster communication involving the temporary cluster heads. Performance studies indicate that the proposed algorithm solves effectively the problem of load balancing and is also more efficient in terms of energy consumption from Leach and the enhanced version of Leach
    corecore