12,392 research outputs found

    Novel sparse OBC based distributed arithmetic architecture for matrix transforms

    Get PDF
    Inner product (IP) forms the basis of a number of signal processing algorithms and applications such as transforms, filters, communication systems etc. Distributed arithmetic (DA) provides an effective methodology to implement IP of vectors and matrices using a simple combination of memory elements, adders and shifters instead of lumped multipliers. This bit level rearrangement results in much higher computational efficiencies and yields compact designs highly suited for high performance resource constrained applications. Offset binary coding (OBC) is an effective technique to further optimize the DA, and allows us to reduce the memory requirements by a factor of two, with minimum additional computational complexity. This makes OBC-DA attractive for applications that are both resource and memory constrained. In addition, sparse matrix factorization techniques can be exploited to further reduce the size of the DA-ROMs. In this paper, the design and implementation of a novel OBC based DA is demonstrated using a generic architecture for implementing discrete orthogonal transforms (DOTs). Implementation is performed on the Xilinx Virtex-II Pro field programmable gate array (FPGA), and a detailed comparison between conventional and OBC based DA is presented to highlight the trade offs in various design metrics including performance, area and power

    A committee machine gas identification system based on dynamically reconfigurable FPGA

    Get PDF
    This paper proposes a gas identification system based on the committee machine (CM) classifier, which combines various gas identification algorithms, to obtain a unified decision with improved accuracy. The CM combines five different classifiers: K nearest neighbors (KNNs), multilayer perceptron (MLP), radial basis function (RBF), Gaussian mixture model (GMM), and probabilistic principal component analysis (PPCA). Experiments on real sensors' data proved the effectiveness of our system with an improved accuracy over individual classifiers. Due to the computationally intensive nature of CM, its implementation requires significant hardware resources. In order to overcome this problem, we propose a novel time multiplexing hardware implementation using a dynamically reconfigurable field programmable gate array (FPGA) platform. The processing is divided into three stages: sampling and preprocessing, pattern recognition, and decision stage. Dynamically reconfigurable FPGA technique is used to implement the system in a sequential manner, thus using limited hardware resources of the FPGA chip. The system is successfully tested for combustible gas identification application using our in-house tin-oxide gas sensors

    Practical Implementation of Lattice QCD Simulation on Intel Xeon Phi Knights Landing

    Full text link
    We investigate implementation of lattice Quantum Chromodynamics (QCD) code on the Intel Xeon Phi Knights Landing (KNL). The most time consuming part of the numerical simulations of lattice QCD is a solver of linear equation for a large sparse matrix that represents the strong interaction among quarks. To establish widely applicable prescriptions, we examine rather general methods for the SIMD architecture of KNL, such as using intrinsics and manual prefetching, to the matrix multiplication and iterative solver algorithms. Based on the performance measured on the Oakforest-PACS system, we discuss the performance tuning on KNL as well as the code design for facilitating such tuning on SIMD architecture and massively parallel machines.Comment: 8 pages, 12 figures. Talk given at LHAM'17 "5th International Workshop on Legacy HPC Application Migration" in CANDAR'17 "The Fifth International Symposium on Computing and Networking" and to appear in the proceeding

    Joint Optimization of Low-power DCT Architecture and Effcient Quantization Technique for Embedded Image Compression

    Get PDF
    International audienceThe Discrete Cosine Transform (DCT)-based image com- pression is widely used in today's communication systems. Signi cant research devoted to this domain has demonstrated that the optical com- pression methods can o er a higher speed but su er from bad image quality and a growing complexity. To meet the challenges of higher im- age quality and high speed processing, in this chapter, we present a joint system for DCT-based image compression by combining a VLSI archi- tecture of the DCT algorithm and an e cient quantization technique. Our approach is, rstly, based on a new granularity method in order to take advantage of the adjacent pixel correlation of the input blocks and to improve the visual quality of the reconstructed image. Second, a new architecture based on the Canonical Signed Digit and a novel Common Subexpression Elimination technique is proposed to replace the constant multipliers. Finally, a recon gurable quantization method is presented to e ectively save the computational complexity. Experimental results obtained with a prototype based on FPGA implementation and com- parisons with existing works corroborate the validity of the proposed optimizations in terms of power reduction, speed increase, silicon area saving and PSNR improvement

    Design and implementation of DA FIR filter for bio-inspired computing architecture

    Get PDF
    This paper elucidates the system construct of DA-FIR filter optimized for design of distributed arithmetic (DA) finite impulse response (FIR) filter and is based on architecture with tightly coupled co-processor based data processing units. With a series of look-up-table (LUT) accesses in order to emulate multiply and accumulate operations the constructed DA based FIR filter is implemented on FPGA. The very high speed integrated circuit hardware description language (VHDL) is used implement the proposed filter and the design is verified using simulation. This paper discusses two optimization algorithms and resulting optimizations are incorporated into LUT layer and architecture extractions. The proposed method offers an optimized design in the form of offers average miminimizations of the number of LUT, reduction in populated slices and gate minimization for DA-finite impulse response filter. This research paves a direction towards development of bio inspired computing architectures developed without logically intensive operations, obtaining the desired specifications with respect to performance, timing, and reliability

    A Novel Methodology for Memory Reduction in Distributed Arithmetic Based Discrete Wavelet Transform

    Get PDF
    AbstractDiscrete Wavelet Transform (DWT) is widely used in image compression standards such as JPEG 2000. DWT can be implemented on FPGA using parallel Distributed Arithmetic (DA) architecture, which is suitable for low power implementation. However, the size of the memory in DA increases with the number of wavelet coefficients. In this paper, we propose a novel methodology to reduce the size of the Look-Up Tables (LUTs) used in DA for DWT. The table entries are sorted using Burrows-Wheeler Transform (BWT) and then compressed. The compressed table is stored in memory. During DWT/IDWT computation, without reconstructing the entire table we can recover only the required table entry. A comparative study of this methodology among different wavelets is performed. We demonstrate that the method is very effective for reducing the memory of DA architectures. A compression ratio of around 2.3:1 is achieved for the look-up table which stores the inner product of high-pass filter coefficients of Daubechies-4 (Db4) wavelet which is used in JPEG2000
    corecore