11,290 research outputs found

    Off the Beaten Path: Let's Replace Term-Based Retrieval with k-NN Search

    Full text link
    Retrieval pipelines commonly rely on a term-based search to obtain candidate records, which are subsequently re-ranked. Some candidates are missed by this approach, e.g., due to a vocabulary mismatch. We address this issue by replacing the term-based search with a generic k-NN retrieval algorithm, where a similarity function can take into account subtle term associations. While an exact brute-force k-NN search using this similarity function is slow, we demonstrate that an approximate algorithm can be nearly two orders of magnitude faster at the expense of only a small loss in accuracy. A retrieval pipeline using an approximate k-NN search can be more effective and efficient than the term-based pipeline. This opens up new possibilities for designing effective retrieval pipelines. Our software (including data-generating code) and derivative data based on the Stack Overflow collection is available online

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012

    Approximate Nearest Neighbor Fields in Video

    Full text link
    We introduce RIANN (Ring Intersection Approximate Nearest Neighbor search), an algorithm for matching patches of a video to a set of reference patches in real-time. For each query, RIANN finds potential matches by intersecting rings around key points in appearance space. Its search complexity is reversely correlated to the amount of temporal change, making it a good fit for videos, where typically most patches change slowly with time. Experiments show that RIANN is up to two orders of magnitude faster than previous ANN methods, and is the only solution that operates in real-time. We further demonstrate how RIANN can be used for real-time video processing and provide examples for a range of real-time video applications, including colorization, denoising, and several artistic effects.Comment: A CVPR 2015 oral pape

    Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments

    Full text link
    For the past decade, query processing on relational data has been studied extensively, and many theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud ever decrypting the data is a very challenging task. In this paper, we focus on solving the k-nearest neighbor (kNN) query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud, and the cloud returns the k closest records to the user. We first present a basic scheme and demonstrate that such a naive solution is not secure. To provide better security, we propose a secure kNN protocol that protects the confidentiality of the data, user's input query, and data access patterns. Also, we empirically analyze the efficiency of our protocols through various experiments. These results indicate that our secure protocol is very efficient on the user end, and this lightweight scheme allows a user to use any mobile device to perform the kNN query.Comment: 23 pages, 8 figures, and 4 table

    The Flexible Group Spatial Keyword Query

    Full text link
    We present a new class of service for location based social networks, called the Flexible Group Spatial Keyword Query, which enables a group of users to collectively find a point of interest (POI) that optimizes an aggregate cost function combining both spatial distances and keyword similarities. In addition, our query service allows users to consider the tradeoffs between obtaining a sub-optimal solution for the entire group and obtaining an optimimized solution but only for a subgroup. We propose algorithms to process three variants of the query: (i) the group nearest neighbor with keywords query, which finds a POI that optimizes the aggregate cost function for the whole group of size n, (ii) the subgroup nearest neighbor with keywords query, which finds the optimal subgroup and a POI that optimizes the aggregate cost function for a given subgroup size m (m <= n), and (iii) the multiple subgroup nearest neighbor with keywords query, which finds optimal subgroups and corresponding POIs for each of the subgroup sizes in the range [m, n]. We design query processing algorithms based on branch-and-bound and best-first paradigms. Finally, we provide theoretical bounds and conduct extensive experiments with two real datasets which verify the effectiveness and efficiency of the proposed algorithms.Comment: 12 page
    corecore