6,624 research outputs found

    Efficient Probabilistic Performance Bounds for Inverse Reinforcement Learning

    Full text link
    In the field of reinforcement learning there has been recent progress towards safety and high-confidence bounds on policy performance. However, to our knowledge, no practical methods exist for determining high-confidence policy performance bounds in the inverse reinforcement learning setting---where the true reward function is unknown and only samples of expert behavior are given. We propose a sampling method based on Bayesian inverse reinforcement learning that uses demonstrations to determine practical high-confidence upper bounds on the α\alpha-worst-case difference in expected return between any evaluation policy and the optimal policy under the expert's unknown reward function. We evaluate our proposed bound on both a standard grid navigation task and a simulated driving task and achieve tighter and more accurate bounds than a feature count-based baseline. We also give examples of how our proposed bound can be utilized to perform risk-aware policy selection and risk-aware policy improvement. Because our proposed bound requires several orders of magnitude fewer demonstrations than existing high-confidence bounds, it is the first practical method that allows agents that learn from demonstration to express confidence in the quality of their learned policy.Comment: In proceedings AAAI-1

    Cover Tree Bayesian Reinforcement Learning

    Get PDF
    This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear models, which can be updated in closed form. The tree structure itself is constructed using the cover tree method, which remains efficient in high dimensional spaces. We combine the model with Thompson sampling and approximate dynamic programming to obtain effective exploration policies in unknown environments. The flexibility and computational simplicity of the model render it suitable for many reinforcement learning problems in continuous state spaces. We demonstrate this in an experimental comparison with least squares policy iteration

    An Analysis of the Value of Information when Exploring Stochastic, Discrete Multi-Armed Bandits

    Full text link
    In this paper, we propose an information-theoretic exploration strategy for stochastic, discrete multi-armed bandits that achieves optimal regret. Our strategy is based on the value of information criterion. This criterion measures the trade-off between policy information and obtainable rewards. High amounts of policy information are associated with exploration-dominant searches of the space and yield high rewards. Low amounts of policy information favor the exploitation of existing knowledge. Information, in this criterion, is quantified by a parameter that can be varied during search. We demonstrate that a simulated-annealing-like update of this parameter, with a sufficiently fast cooling schedule, leads to an optimal regret that is logarithmic with respect to the number of episodes.Comment: Entrop

    Bayesian multitask inverse reinforcement learning

    Get PDF
    We generalise the problem of inverse reinforcement learning to multiple tasks, from multiple demonstrations. Each one may represent one expert trying to solve a different task, or as different experts trying to solve the same task. Our main contribution is to formalise the problem as statistical preference elicitation, via a number of structured priors, whose form captures our biases about the relatedness of different tasks or expert policies. In doing so, we introduce a prior on policy optimality, which is more natural to specify. We show that our framework allows us not only to learn to efficiently from multiple experts but to also effectively differentiate between the goals of each. Possible applications include analysing the intrinsic motivations of subjects in behavioural experiments and learning from multiple teachers.Comment: Corrected version. 13 pages, 8 figure
    • …
    corecore