29 research outputs found

    Technical Report: A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints

    Full text link
    This technical report is an extended version of the paper 'A Receding Horizon Algorithm for Informative Path Planning with Temporal Logic Constraints' accepted to the 2013 IEEE International Conference on Robotics and Automation (ICRA). This paper considers the problem of finding the most informative path for a sensing robot under temporal logic constraints, a richer set of constraints than have previously been considered in information gathering. An algorithm for informative path planning is presented that leverages tools from information theory and formal control synthesis, and is proven to give a path that satisfies the given temporal logic constraints. The algorithm uses a receding horizon approach in order to provide a reactive, on-line solution while mitigating computational complexity. Statistics compiled from multiple simulation studies indicate that this algorithm performs better than a baseline exhaustive search approach.Comment: Extended version of paper accepted to 2013 IEEE International Conference on Robotics and Automation (ICRA

    Adaptive Information Gathering via Imitation Learning

    Full text link
    In the adaptive information gathering problem, a policy is required to select an informative sensing location using the history of measurements acquired thus far. While there is an extensive amount of prior work investigating effective practical approximations using variants of Shannon's entropy, the efficacy of such policies heavily depends on the geometric distribution of objects in the world. On the other hand, the principled approach of employing online POMDP solvers is rendered impractical by the need to explicitly sample online from a posterior distribution of world maps. We present a novel data-driven imitation learning framework to efficiently train information gathering policies. The policy imitates a clairvoyant oracle - an oracle that at train time has full knowledge about the world map and can compute maximally informative sensing locations. We analyze the learnt policy by showing that offline imitation of a clairvoyant oracle is implicitly equivalent to online oracle execution in conjunction with posterior sampling. This observation allows us to obtain powerful near-optimality guarantees for information gathering problems possessing an adaptive sub-modularity property. As demonstrated on a spectrum of 2D and 3D exploration problems, the trained policies enjoy the best of both worlds - they adapt to different world map distributions while being computationally inexpensive to evaluate.Comment: Robotics Science and Systems, 201

    Mission Design for Compressive Sensing with Mobile Robots

    Get PDF
    This paper considers mission design strategies for mobile robots whose task is to perform spatial sampling of a static environmental field, in the framework of compressive sensing. According to this theory, we can reconstruct compressible fields using O(log n) nonadaptive measurements (where n is the number of sites of the spatial domain), in a basis that is "in coherent" to the representation basis [1]; random uncorrelated measurements satisfy this incoherence requirement. Because an autonomous vehicle is kinematically constrained and has finite energy and communication resources, it is an open question how to best design missions for CS reconstruction. We compare a two-dimensional random walk, a TSP approximation to pass through random points, and a randomized boustrophedon (lawnmower) strategy. Not unexpectedly, all three approaches can yield comparable reconstruction performance if the planning horizons are long enough; if planning occurs only over short time scales, the random walk will have an advantage

    Top-k Route Search through Submodularity Modeling of Recurrent POI Features

    Full text link
    We consider a practical top-k route search problem: given a collection of points of interest (POIs) with rated features and traveling costs between POIs, a user wants to find k routes from a source to a destination and limited in a cost budget, that maximally match her needs on feature preferences. One challenge is dealing with the personalized diversity requirement where users have various trade-off between quantity (the number of POIs with a specified feature) and variety (the coverage of specified features). Another challenge is the large scale of the POI map and the great many alternative routes to search. We model the personalized diversity requirement by the whole class of submodular functions, and present an optimal solution to the top-k route search problem through indices for retrieving relevant POIs in both feature and route spaces and various strategies for pruning the search space using user preferences and constraints. We also present promising heuristic solutions and evaluate all the solutions on real life data.Comment: 11 pages, 7 figures, 2 table

    The Impact of Message Passing in Agent-Based Submodular Maximization

    Full text link
    Submodular maximization problems are a relevant model set for many real-world applications. Since these problems are generally NP-Hard, many methods have been developed to approximate the optimal solution in polynomial time. One such approach uses an agent-based greedy algorithm, where the goal is for each agent to choose an action from its action set such that the union of all actions chosen is as high-valued as possible. Recent work has shown how the performance of the greedy algorithm degrades as the amount of information shared among the agents decreases, whereas this work addresses the scenario where agents are capable of sharing more information than allowed in the greedy algorithm. Specifically, we show how performance guarantees increase as agents are capable of passing messages, which can augment the allowable decision set for each agent. Under these circumstances, we show a near-optimal method for message passing, and how much such an algorithm could increase performance for any given problem instance

    A Scalable Information Theoretic Approach to Distributed Robot Coordination

    Get PDF
    This paper presents a scalable information theoretic approach to infer the state of an environment by distributively controlling robots equipped with sensors. The robots iteratively estimate the environment state using a recursive Bayesian filter, while continuously moving to improve the quality of the estimate by following the gradient of mutual information. Both the filter and the controller use a novel algorithm for approximating the robots' joint measurement probabilities, which combines consensus (for decentralization) and sampling (for scalability). The approximations are shown to approach the true joint measurement probabilities as the size of the consensus rounds grows or as the network becomes complete. The resulting gradient controller runs in constant time with respect to the number of robots, and linear time with respect to the number of sensor measurements and environment discretization cells, while traditional mutual information methods are exponential in all of these quantities. Furthermore, the controller is proven to be convergent between consensus rounds and, under certain conditions, is locally optimal. The complete distributed inference and coordination algorithm is demonstrated in experiments with five quad-rotor flying robots and simulations with 100 robots.This work is sponsored by the Department of the Air Force under Air Force contract number FA8721-05-C-0002. The opinions, interpretations, recommendations, and conclusions are those of the authors and are not necessarily endorsed by the United States Government. This work is also supported in part by ARO grant number W911NF-05-1-0219, ONR grant number N00014-09-1-1051, NSF grant number EFRI-0735953, ARL grant number W911NF-08-2-0004, MIT Lincoln Laboratory, the European Commission, and the Boeing Company
    corecore