21,033 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Pupil-driven quantitative differential phase contrast imaging

    Full text link
    In this research, we reveal the inborn but hitherto ignored properties of quantitative differential phase contrast (qDPC) imaging: the phase transfer function being an edge detection filter. Inspired by this, we highlighted the duality of qDPC between optics and pattern recognition, and propose a simple and effective qDPC reconstruction algorithm, termed Pupil-Driven qDPC (pd-qDPC), to facilitate the phase reconstruction quality for the family of qDPC-based phase reconstruction algorithms. We formed a new cost function in which modified L0-norm was used to represent the pupil-driven edge sparsity, and the qDPC convolution operator is duplicated in the data fidelity term to achieve automatic background removal. Further, we developed the iterative reweighted soft-threshold algorithms based on split Bregman method to solve this modified L0-norm problem. We tested pd-qDPC on both simulated and experimental data and compare against state-of-the-art (SOTA) methods including L2-norm, total variation regularization (TV-qDPC), isotropic-qDPC, and Retinex qDPC algorithms. Results show that our proposed model is superior in terms of phase reconstruction quality and implementation efficiency, in which it significantly increases the experimental robustness while maintaining the data fidelity. In general, the pd-qDPC enables the high-quality qDPC reconstruction without any modification of the optical system. It simplifies the system complexity and benefits the qDPC community and beyond including but not limited to cell segmentation and PTF learning based on the edge filtering property

    A DeepONet multi-fidelity approach for residual learning in reduced order modeling

    Full text link
    In the present work, we introduce a novel approach to enhance the precision of reduced order models by exploiting a multi-fidelity perspective and DeepONets. Reduced models provide a real-time numerical approximation by simplifying the original model. The error introduced by the such operation is usually neglected and sacrificed in order to reach a fast computation. We propose to couple the model reduction to a machine learning residual learning, such that the above-mentioned error can be learned by a neural network and inferred for new predictions. We emphasize that the framework maximizes the exploitation of high-fidelity information, using it for building the reduced order model and for learning the residual. In this work, we explore the integration of proper orthogonal decomposition (POD), and gappy POD for sensors data, with the recent DeepONet architecture. Numerical investigations for a parametric benchmark function and a nonlinear parametric Navier-Stokes problem are presented

    SignReLU neural network and its approximation ability

    Full text link
    Deep neural networks (DNNs) have garnered significant attention in various fields of science and technology in recent years. Activation functions define how neurons in DNNs process incoming signals for them. They are essential for learning non-linear transformations and for performing diverse computations among successive neuron layers. In the last few years, researchers have investigated the approximation ability of DNNs to explain their power and success. In this paper, we explore the approximation ability of DNNs using a different activation function, called SignReLU. Our theoretical results demonstrate that SignReLU networks outperform rational and ReLU networks in terms of approximation performance. Numerical experiments are conducted comparing SignReLU with the existing activations such as ReLU, Leaky ReLU, and ELU, which illustrate the competitive practical performance of SignReLU

    Networked Time Series Prediction with Incomplete Data

    Full text link
    A networked time series (NETS) is a family of time series on a given graph, one for each node. It has a wide range of applications from intelligent transportation, environment monitoring to smart grid management. An important task in such applications is to predict the future values of a NETS based on its historical values and the underlying graph. Most existing methods require complete data for training. However, in real-world scenarios, it is not uncommon to have missing data due to sensor malfunction, incomplete sensing coverage, etc. In this paper, we study the problem of NETS prediction with incomplete data. We propose NETS-ImpGAN, a novel deep learning framework that can be trained on incomplete data with missing values in both history and future. Furthermore, we propose Graph Temporal Attention Networks, which incorporate the attention mechanism to capture both inter-time series and temporal correlations. We conduct extensive experiments on four real-world datasets under different missing patterns and missing rates. The experimental results show that NETS-ImpGAN outperforms existing methods, reducing the MAE by up to 25%

    The Inductive Bias of Flatness Regularization for Deep Matrix Factorization

    Full text link
    Recent works on over-parameterized neural networks have shown that the stochasticity in optimizers has the implicit regularization effect of minimizing the sharpness of the loss function (in particular, the trace of its Hessian) over the family zero-loss solutions. More explicit forms of flatness regularization also empirically improve the generalization performance. However, it remains unclear why and when flatness regularization leads to better generalization. This work takes the first step toward understanding the inductive bias of the minimum trace of the Hessian solutions in an important setting: learning deep linear networks from linear measurements, also known as \emph{deep matrix factorization}. We show that for all depth greater than one, with the standard Restricted Isometry Property (RIP) on the measurements, minimizing the trace of Hessian is approximately equivalent to minimizing the Schatten 1-norm of the corresponding end-to-end matrix parameters (i.e., the product of all layer matrices), which in turn leads to better generalization. We empirically verify our theoretical findings on synthetic datasets

    Modeling of a Liquid Leaf Target TNSA Experiment using Particle-In-Cell Simulations and Deep Learning

    Full text link
    Liquid leaf targets show promise as high repetition rate targets for laser-based ion acceleration using the Target Normal Sheath Acceleration (TNSA) mechanism and are currently under development. In this work, we discuss the effects of different ion species and investigate how they can be leveraged for use as a possible laser-driven neutron source. To aid in this research, we develop a surrogate model for liquid leaf target laser-ion acceleration experiments, based on artificial neural networks. The model is trained using data from Particle-In-Cell (PIC) simulations. The fast inference speed of our deep learning model allows us to optimize experimental parameters for maximum ion energy and laser-energy conversion efficiency. An analysis of parameter influence on our model output, using Sobol and PAWN indices, provides deeper insights into the laser-plasma system

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    Interpretable and explainable machine learning for ultrasonic defect sizing

    Get PDF
    Despite its popularity in literature, there are few examples of machine learning (ML) being used for industrial nondestructive evaluation (NDE) applications. A significant barrier is the ‘black box’ nature of most ML algorithms. This paper aims to improve the interpretability and explainability of ML for ultrasonic NDE by presenting a novel dimensionality reduction method: Gaussian feature approximation (GFA). GFA involves fitting a 2D elliptical Gaussian function an ultrasonic image and storing the seven parameters that describe each Gaussian. These seven parameters can then be used as inputs to data analysis methods such as the defect sizing neural network presented in this paper. GFA is applied to ultrasonic defect sizing for inline pipe inspection as an example application. This approach is compared to sizing with the same neural network, and two other dimensionality reduction methods (the parameters of 6 dB drop boxes and principal component analysis), as well as a convolutional neural network applied to raw ultrasonic images. Of the dimensionality reduction methods tested, GFA features produce the closest sizing accuracy to sizing from the raw images, with only a 23% increase in RMSE, despite a 96.5% reduction in the dimensionality of the input data. Implementing ML with GFA is implicitly more interpretable than doing so with principal component analysis or raw images as inputs, and gives significantly more sizing accuracy than 6 dB drop boxes. Shapley additive explanations (SHAP) are used to calculate how each feature contributes to the prediction of an individual defect’s length. Analysis of SHAP values demonstrates that the GFA-based neural network proposed displays many of the same relationships between defect indications and their predicted size as occur in traditional NDE sizing methods

    Online Network Source Optimization with Graph-Kernel MAB

    Full text link
    We propose Grab-UCB, a graph-kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks, such that the reward obtained from a priori unknown network processes is maximized. The uncertainty calls for online learning, which suffers however from the curse of dimensionality. To achieve sample efficiency, we describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations. This enables a data-efficient learning framework, whose learning rate scales with the dimension of the spectral representation model instead of the one of the network. We then propose Grab-UCB, an online sequential decision strategy that learns the parameters of the spectral representation while optimizing the action strategy. We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy We introduce a computationally simplified solving method, Grab-arm-Light, an algorithm that walks along the edges of the polytope representing the objective function. Simulations results show that the proposed online learning algorithm outperforms baseline offline methods that typically separate the learning phase from the testing one. The results confirm the theoretical findings, and further highlight the gain of the proposed online learning strategy in terms of cumulative regret, sample efficiency and computational complexity
    • …
    corecore