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Abstract—Recent work on simultaneous trajectory estimation
and mapping (STEAM) for mobile robots has found success
by representing the trajectory as a Gaussian process. Gaussian
processes can represent a continuous-time trajectory, elegantly
handle asynchronous and sparse measurements, and allow the
robot to query the trajectory to recover its estimated position
at any time of interest. A major drawback of this approach
is that STEAM is formulated as a batch estimation problem.
In this paper we provide the critical extensions necessary to
transform the existing batch algorithm into an extremely efficient
incremental algorithm. In particular, we are able to vastly speed
up the solution time through efficient variable reordering and
incremental sparse updates, which we believe will greatly increase
the practicality of Gaussian process methods for robot mapping
and localization. Finally, we demonstrate the approach and its
advantages on both synthetic and real datasets.

I. INTRODUCTION & RELATED WORK

Simultaneously recovering the location of a robot and a
map of its environment from sensor readings is a fundamental
challenge in robotics [19, 8, 1].

Well-known approaches to this problem, such as square
root smoothing and mapping (SAM) [5], have focused on
regression-based methods that exploit the sparse structure
of the problem to efficiently compute a solution. The main
weakness of the original SAM algorithm was that it was a
batch method: all of the data must be collected before a
solution can be found. For a robot traversing an environment,
the inability to update an estimate of its trajectory online is
a significant drawback. In response to this weakness, Kaess
et al. [12] developed a critical extension to the batch SAM
algorithm, incremental smoothing and mapping (iSAM), that
overcomes this problem by incrementally computing a solu-
tion. The main drawback of iSAM, was that the approach
required costly periodic batch steps for variable reordering
to maintain sparsity and relinearization. This approach was
extended in iSAM 2.0 [13], which employs an efficient data
structure called the Bayes tree [14] to perform incremental
variable reordering and just-in-time relinearization, thereby
eliminating the bottleneck caused by batch variable reordering
and relinearization. The iSAM 2.0 algorithm and its extensions
are widely considered to be state-of-the-art in robot trajectory
estimation and mapping.

The majority of previous approaches to trajectory estimation
and mapping, including the smoothing-based SAM family of

algorithms, have formulated the problem in discrete time [16,
19, 8, 1, 5, 13, 3]. However, discrete-time representations
are restrictive: they are not easily extended to trajectories
with irregularly spaced waypoints or asynchronously sampled
measurements. A continuous-time formulation of the SAM
problem where measurements constrain the trajectory at any
point in time, would elegantly contend with these difficulties.
Viewed from this perspective, the robot trajectory is a function
x(t), that maps any time t to a robot state. The problem of
estimating this function along with landmark locations has
been dubbed simultaneous trajectory estimation and mapping
(STEAM) [2].

Tong et al. [20] proposed a Gaussian process (GP) regres-
sion approach to solving the STEAM problem. While their
approach was able to accurately model and interpolate asyn-
chronous data to recover a trajectory and landmark estimate,
it suffered from significant computational challenges: naive
Gaussian process approaches to regression have notoriously
high space and time complexity. Additionally, Tong et al.’s
approach is a batch method, so updating the solution ne-
cessitates saving all of the data and completely resolving
the problem. In order to combat the computational burden,
Tong et al.’s approach was extended in Barfoot et al. [2]
to take advantage of the sparse structure inherent in the
STEAM problem. The resulting algorithm significantly speeds
up solution time and can be viewed as a continuous-time
analog of Dellaert’s original square-root SAM algorithm [5].
Unfortunately, like SAM, Barfoot et al.’s GP-based algorithm
remains a batch algorithm, which is a disadvantage for robots
that need to continually update the estimate of their trajectory
and environment.

In this work, we provide the critical extensions necessary
to transform the existing Gaussian process-based approach
to solving the STEAM problem into an extremely efficient
incremental approach. Our algorithm elegantly combines the
benefits of Gaussian processes and iSAM 2.0. Like the GP
regression approaches to STEAM, our approach can model
continuous trajectories, handle asynchronous measurements,
and naturally interpolate states to speed up computation and
reduce storage requirements, and, like iSAM 2.0, our approach
uses a Bayes tree to efficiently calculate a maximum a poste-
riori (MAP) estimate of the GP trajectory while performing



incremental factorization, variable reordering, and just-in-time
relinearization. The result is an online GP-based solution to
the STEAM problem that remains computationally efficient
while scaling up to large datasets.

II. BATCH TRAJECTORY ESTIMATION & MAPPING AS
GAUSSIAN PROCESS REGRESSION

We begin by describing how the simultaneous trajectory
estimation and mapping (STEAM) problem can be formulated
in terms of Gaussian process regression. Following Tong et
al. [20] and Barfoot et al. [2], we represent robot trajectories
as functions of time t sampled from a Gaussian process:

x(t) ∼ GP(µ(t),K(t, t′)), t0 < t, t′ (1)

Here, x(t) is the continuous-time trajectory of the robot
through state-space, represented by a Gaussian process with
mean µ(t) and covariance K(t, t′) functions.

We next define a finite set of measurements:

yi = hi(θi) + ni, ni ∼ N (0,Ri), i = 1, 2, ..., N (2)

The measurement yi can be any linear or nonlinear func-
tions of a set of related variables θi plus some Gaussian noise
ni. The related variables for a range measurement are the robot
state at the corresponding measurement time x(ti) and the
associated landmark location `j . We assume the total number
of measurements is N , and the number of trajectory states at
measurement times are M .

Based on the definition of Gaussian processes, any finite col-
lection of robot states has a joint Gaussian distribution [18]. So
the robot states at measurement times are normally distributed
with mean µ and covariance K.

x ∼ N (µ,K), x = [ x(t1)ᵀ . . . x(tM )ᵀ ]ᵀ

µ = [ µ(t1)ᵀ . . . µ(tM )ᵀ ]ᵀ, Kij = K(ti, tj)
(3)

Note that any point along the continuous-time trajectory can
be estimated from the Gaussian process model. Therefore, the
trajectory does not need to be discretized and robot trajectory
states do not need to be evenly spaced in time, which is an
advantage of the Gaussian process approach over discrete-time
approaches (e.g. Dellaert’s square-root SAM [5]).

The landmarks ` which represent the map are assumed to
conform to a joint Gaussian distribution with mean d and
covariance W (Eq. 4). The prior distribution of the combined
state θ that consists of robot trajectory states at measurement
times and landmarks is, therefore, a joint Gaussian distribution
(Eq. 5).

` ∼ N (d,W ), ` = [ `ᵀ1 `ᵀ2 . . . `ᵀO ]ᵀ (4)

θ ∼ N (η,P), η = [ µᵀ dᵀ ]ᵀ, P =

[
K

W

]
(5)

To solve the STEAM problem, given the prior distribution of
the combined state and the likelihood of measurements, we

compute the maximum a posteriori (MAP) estimate of the
combined state conditioned on measurements via Bayes’ rule:

θ∗ , θ̂MAP = argmax
θ

p(θ|y) = argmax
θ

p(θ)p(y|θ)

p(y)

= argmax
θ

p(θ)p(y|θ) = argmin
θ

(− log p(θ)− log p(y|θ))

= argmin
θ

(
‖θ − η‖2P + ‖h(θ)− y‖2R

)
(6)

where the norms are Mahalanobis norms defined as: ‖e‖2Σ =
eᵀΣ−1e, and h(θ) and R are the mean and covariance of the
measurements collected, respectively:

h(θ) = [ h1(θ1) h2(θ2) . . . hN (θN ) ]ᵀ (7)
R = diag(R1,R2, . . . ,RN ) (8)

Because both covariance matrices P and R are positive
definite, the objective in Eq. 6 corresponds to a least squares
problem. Consequently, if some of the measurement functions
hi(·) are nonlinear, this becomes a nonlinear least squares
problem, in which case iterative methods including Gauss-
Newton and Levenberg-Marquardt [6] can be utilized. A lin-
earization of a measurement function at current state estimate
θ̄i can be accomplished by a first-order Taylor expansion:

hi
(
θ̄i + δθi

)
≈ hi(θ̄i) +

∂hi
∂θi

∣∣∣∣
θ̄i

δθi (9)

Combining Eq. 9 with Eq. 6, the optimal increment δθ∗ at the
current combined state estimate θ̄ is

δθ∗=argmin
δθ

(
‖θ̄+δθ−η‖2P + ‖h(θ̄)+Hδθ−y‖2R

)
(10)

Where H is the measurement Jacobian matrix:

H = diag(H1,H2, . . . ,HN ), Hi =
∂hi
∂θi

∣∣∣∣
θ̄i

(11)

To solve the linear least squares problem in Eq. 10, we take
the derivative with respect to δθ, and set it to zero, which
gives us δθ∗ embedded in a set of linear equations

(P−1+HᵀR−1H)︸ ︷︷ ︸
I

δθ∗=P−1(η−θ̄)+HᵀR−1(y−h̄)︸ ︷︷ ︸
b

(12)

with covariance

cov(δθ∗, δθ∗) = I−1 (13)

The positive definite matrix P−1 + HᵀR−1H is the a
posteriori information matrix, which we label I . To solve
this set of linear equations for δθ∗, we do not actually
have to calculate the inverse I−1. Instead, factorization-based
methods can provide a fast, numerically stable solution. For
example, δθ∗ can be found by first performing a Cholesky
factorization LLᵀ = I , and then solving Ld = b and
Lᵀδθ∗ = d by back substitution. At each iteration we perform
a batch state estimation update θ̄ ← θ̄ + δθ∗ and repeat the
process until convergence.

If I is dense, the time complexity of a Cholesky factoriza-
tion and back substitution are O(n3) and O(n2) respectively,



where I ∈ Rn×n [9]. However, if I has sparse structure,
then the solution can be found much faster. For example, for a
narrowly banded matrix, the computation time is O(n) instead
of O(n3) [9]. Fortunately, we can guarantee sparsity for the
STEAM problem (see Section II-B below).

A. State Interpolation

An advantage of the Gaussian process representation of the
robot trajectory is that any trajectory state can be interpolated
from other states by computing the posterior mean [20]:

x̄(t) = µ(t) + K(t)K−1(x̄− µ), (14)

with

x̄ = [ x̄(t1) . . . x̄(tM ) ]ᵀ and

K(t) = [ K(t, t1) . . . K(t, tM ) ]. (15)

By utilizing interpolation, we can reduce the number of robot
trajectory states that we need to estimate in the optimization
procedure [20]. For simplicity, assume θi, the set of the related
variables of the ith measurement according to the model
(Eq. 2), is x(tj). Then, after interpolation, Eq. 9 becomes:

hi
(
θ̄i + δθi

)
= hi (x̄(tj) + δx(tj))

≈ hi(x̄(tj)) +
∂hi
∂x(tj)

· ∂x(tj)

∂x

∣∣∣∣
x̄

δx

= hi
(
µ(tj)+K(tj)K−1(x̄−µ)

)
+HiK(tj)K−1δx (16)

By employing Eq. 16 during optimization, we can make use
of measurement i without explicitly estimating the trajectory
states that it relates to. We exploit this advantage to greatly
speed up the solution to the STEAM problem in practice
(Section V).

B. Sparse Gaussian Process Regression

The efficiency of the Gaussian Process Gauss-Newton al-
gorithm presented in Section II is heavily dependent on the
choice of kernel. It is well-known that if the information matrix
I is sparse, then it is possible to very efficiently compute the
solution to Eq. 12 [5]. Barfoot et al. suggest a kernel matrix
with a sparse inverse that is well-suited to the simultaneous
trajectory estimation and mapping problem [2]. In particular,
Barfoot et al. show that K−1 is exactly block-tridiagonal
when the GP is assumed to be generated by linear, time-
varying (LTV) stochastic differential equation (SDE) which
we describe here:

ẋ(t) = A(t)x(t) + v(t) + F (t)w(t), (17)
w(t) ∼ GP(0, Qcδ(t− t′)) t0 < t, t′ (18)

where x(t) is trajectory, v(t) is known exogenous input, w(t)
is process noise, and F (t) is time-varying system matrix. The
process noise w(t) is modeled by a Gaussian process, and δ(·)
is the Dirac delta function. (See [2] for details). We consider
a specific case of this model in the experimental results in
Section V-A.

Assuming the GP is generated by Eq. 17, the measurements
are landmark and odometry measurements, and the variables
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Fig. 1: Sparse information matrices. The information matrix
I with XL ordering1 and SYMAMD ordering2. Both sparse
matrices have the same number of non-zero elements, yet the
second matrix can be factored much more efficiently due to
the heuristic ordering of the matrix columns. (See Table I).
For illustration, only 200 trajectory states are shown here.

are ordered in XL ordering1, the sparse information matrix
becomes

I =

[
Ixx Ix`
Iᵀ
x` I``

]
(19)

where Ixx is block-tridiagonal and I`` is block-diagonal.
Ix`’s density depends on the frequency of landmark measure-
ments, and how they are taken. See Fig. 1a for an example.

When the GP is generated by LTV SDE, Barfoot et al. prove
that K(t)K−1 in Eq. 14 has a specific sparsity pattern, only
two column blocks that correspond to trajectory states at ti
and ti+1, where ti < t < ti+1, are nonzero. In other words,
x̄(t) is an affine function of only two nearby states x̄(ti) and
x̄(ti+1):

x̄(t) =µ(t) + Λ(t) (x̄(ti)−µ(ti))+Ψ(t) (x̄(ti+1)−µ(ti+1)) ,

ti < t < ti+1 (20)

Thus, it only takes O(1) time to query any x̄(t) using Eq. 20.
Moreover, because interpolation of a state is only determined
by the two nearby states, measurement interpolation in Eq. 16
can be significantly simplified.

III. BATCH GP-REGRESSION WITH VARIABLE
REORDERING

Previous work on batch continuous-time trajectory estima-
tion as sparse Gaussian process regression [20, 2] assumes
that the information matrix I is sparse (Eq. 19) and applies
standard block elimination to factor and solve Eq. 12. Despite
the sparsity of I , for large numbers of landmarks this process
can be very inefficient. Inspired by square root SAM [5], which
uses variable reordering for efficient Cholesky factorization in
a discrete-time context, we show that factorization-time can
be dramatically improved by matrix column reordering in the
sparse Gaussian process context as well.

1 XL ordering is an ordering where process variables come before land-
marks variables.



TABLE I: Cost of Cholesky factorization with different order-
ing methods including ordering time

XL1 SYMAMD Block SYMAMD
nnz 3 1817499 192285 176105
time (sec) 0.967720 0.027402 0.017500

It is reasonable to base our approach on SAM because the
information matrix and factor graph of the sparse GP [2]
has structure similar to the SAM formulations of the prob-
lem [5, 12], and the intuitions from previous discrete-time
approaches apply here. If the Cholesky decompositions are
performed naively, fill-in can occur, where entries that are zero
in the information matrix become non-zero in the Cholesky
factor. This occurs because the Cholesky factor of a sparse
matrix is guaranteed to be sparse for some variable orderings,
but not all variable orderings [17]. Therefore, we want to find
a good variable ordering so that the Cholesky factor is sparse.

Although finding the optimal ordering for a symmetric
positive definite matrix is NP-complete [21], good heuristics
do exist. One such heuristic is symmetric approximate min-
imum degree permutation (SYMAMD)2 [4]. To demonstrate
the benefits of variable reordering, we constructed a synthetic
example and compared different approaches. The example,
which is explained in detail in Section V-A, consists of 1,500
time steps with trajectory states, x(ti) = [ p(ti) ṗ(ti) ]ᵀ,
p(ti) = [ x(ti) y(ti) θ(ti) ]ᵀ, and with odometry and
range measurements. The total number of landmarks is 298.
The structure of the information matrix I and Cholesky factor
L, with and without variable reordering, are compared in
Fig. 1 and Fig. 2. Although variable reordering does not
change the sparsity of the information matrix I (Fig. 1), it
dramatically increases the sparsity of the Cholesky factor L
(Fig. 2). Table I demonstrates this clear benefit of reordering.
The Cholesky factor after SYMAMD ordering contains 10.6%
non-zeroes of XL ordering 1, and takes 2.83% of the time,
which are significant improvements in both time and space
complexity.

We also experimented with block SYMAMD [5], which
exploits domain knowledge to group together variables be-
longing to a particular trajectory state x(ti) or landmark
location `j before performing SYMAMD and empirically
further improves performance.

It is straightforward to incorporate variable reordering meth-
ods like SYMAMD and block SYMAMD into the batch GP-
Regression algorithm from Section II. Given a new batch of
data, directly update the sparse information matrix I , reorder
the variables with (block) SYMAMD, and then recompute the
Cholesky factor L on the way to solving for δθ in Eq. 12.

In most STEAM problems, we are interested in estimating
the robot’s trajectory as it traverses the environment. In
Alg. 1, we accomplish this by repeatedly executing the batch

2SYMAMD is a variant of column approximate minimum degree ordering
(COLAMD) [4] on positive definite matrix.
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Fig. 2: The Cholesky factors L of I . In (a), L is computed
with XL ordering1, which exhibits fill-in. When computed with
SYMAMD ordering in (b), L is more sparse. For illustration,
only 200 states are shown here.

algorithm with variable reordering. Although this approach
seems like it should be very costly, with variable reordering
this method it is actually quite efficient. Building and fac-
toring the sparse information matrix is much faster than the
linearization step required for a single iteration of the Gauss-
Newton algorithm. Since the computational bottleneck is not
the Cholesky decomposition, but rather the relinearization of
the measurement model, we suggest only periodic Gauss-
Newton iterations.

Algorithm 1 Periodic Batch Sparse GP Regression
while collecting data do

1. Get measurement results belonging to this period, y ← [y,ynew]ᵀ

2. Initial guess for the newly encountered states, θ̄ ← [θ̄, θ̄new]ᵀ

3. Build the measurement Jacobian H , and then I and b required in
Eq. 12
4. Find an ordering p for I , and reorder Ip

p←− I , bp
p←− b

5. Solve Ipδθ∗p = bp using Cholesky factorization

6. Recover the solution δθ∗ r←− δθ∗p by inverse ordering r = p−1

7. Update estimate θ̄ ← θ̄ + δθ∗

end while

IV. BAYES TREE FOR FAST INCREMENTAL UPDATES TO
SPARSE GP REGRESSION

Despite the efficiency of periodic batch updates, Alg. 1
is still repeatedly executing a batch algorithm that requires
reordering and refactoring I , and periodically relinearizing
the measurement function for all of the estimated states each
time new data is collected. Here we provide the extensions
necessary to avoid these costly steps and turn the naive batch
algorithm into an efficient, truly incremental, algorithm. The
key idea is to perform just-in-time relinearization and to
efficiently update an existing sparse factorization instead of
re-calculating one from scratch.

3The number of non-zero elements.
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Fig. 3: A simple factor graph that includes landmark measure-
ments, odometry measurements, and Gaussian process priors.

A. The Bayes Tree Data Structure

We base our approach on iSAM 2.0 proposed by Kaess et
al. [13], which was designed to efficiently solve a nonlinear
estimation problem in an incremental and real-time manner
by directly operating on the factor graph representation of the
SAM problem. The core technology behind iSAM 2.0 is the
Bayes tree data structure which allows for incremental vari-
able reordering and fluid relinearization [14]. Demonstrated
by Kaess et al. [13], Bayes tree provides dramatic speedup
compared to batch method, with negligible loss in accuracy.
We apply the same data structure to sparse Gaussian process
regression in the context of the STEAM problem, thereby
eliminating the need for periodic batch computation.

To understand how the Bayes tree is used, it is helpful to un-
derstand how the GP estimation problem can be represented as
a factor graph [15]. Formally, a factor graph is a bipartite graph
G = (F ,θ, E), where F is the set of factor nodes that encodes
all probabilistic constraints on variables, including landmark
measurements, odometry measurements, and smoothing priors,
θ is the set of variable nodes to estimate, and E is the set of
edges that connect factors nodes with variable nodes. The joint
probability of variables to estimate is factored as

f(θ) =
∏
i

fi(θi) (21)

where fi ∈ F is one of the factors, and θi is the set of variables
directly connected to fi. The estimation problem is to find θ∗

that maximizes Eq. 21. As stated in Section II-B, Barfoot et
al. prove that when GPs are generated by LTV SDE, K−1 is
block-tridiagonal [2]. They also state that the factors resulted
from the Gaussian process representation of the trajectory, or
the Gaussian process prior factors, only connect consecutive
pairs of states. This leads to a sparse Factor graph (Fig. 3).

The factor graph can be converted to a Bayes net by a
bipartite elimination game [11]. The procedure is equivalent
to converting Eq. 10 to least squares form and computing the
square-root information matrix L via an incomplete Cholesky
factorization. To facilitate marginalization and optimization,
a Bayes tree, which groups several variables together based
on their dependence, is constructed from the Bayes net [14].
From a linear algebra perspective, the Bayes tree captures the
structure of the Cholesky factor L of I , and the sequence of
back substitutions that can be performed.

When we add a new measurement, add a prior for a new

variable, or relinearize a previous measurement, L will change
accordingly. However, all modifications to the factor graph
only have local effects on L. Exploiting this observation is the
foundation for efficient incremental updates. Since the nodes
of Bayes tree encode conditional probability distributions
which directly correspond to rows in L, the structure of the
tree can be leveraged to efficiently update the factor L [14].

The nodes θnf containing variables involved in new factors,
or nodes θlin whose linear step is larger than a predetermined
threshold, are identified. 4

Only these nodes and their ascendants in the Bayes tree
are then updated. When a sub-tree is updated, variables in
the sub-tree are reordered by constrained COLAMD [4] to
ensure sparsity and heuristically maximize the locality of
future updates. Finally, δθ∗ is computed from tree root to
leaves. Propagation stops when updates to the conditioning
variables are below a predetermined threshold.

Algorithm 2 summarizes incremental Gaussian process re-
gression with the Bayes tree data structure in detail. The
algorithm also incorporates state interpolation, described in
the next section.

B. Faster Updates Through Interpolation

To further reduce computation time, we take advantage of
Gaussian process state interpolation (as suggested by Tong
et al. [20]) within our incremental algorithm. This allows us to
reduce the total number of estimated states, while still using all
of the measurements, including those that involve interpolated
states. By only estimating a small fraction of the states along
the trajectory, we realize a significant speedup relative to a
naive application of the Bayes tree (see Section V). This is an
advantage of GP-based methods with respect to discrete-time
methods like iSAM 2.0.

Algorithm 2 describes how interpolation is used within our
incremental algorithm: First, when a measurement related to a
missing state is received, the variables necessary to interpolate
the state, as well as the corresponding cliques in Bayes tree
that should be removed or updated, are identified. Since the
sparse GP has a LTV SDE prior, each interpolated state is only
a function of two nearby states (see Eq. 20). These nearby
states are therefore included into the set of variables θnf
related to the new factor (line 1). In the case that the GP
relies on a different kernel matrix, the corresponding states
used for interpolation can be determined from Eq. 14. Second,
linearization of factors that involve missing states (line 3) is
performed by incorporating state interpolation via Eq. 16.

V. EXPERIMENTAL RESULTS

We evaluate the performance of our incremental sparse
GP regression algorithm to solving the STEAM problem on
synthetic and real-data experiments and compare our approach
to the state-of-the-art. In particular, we evaluate how variable
reordering can dramatically speed up the batch solution to the
sparse GP regression problem, and how, by utilizing the Bayes

4The reader is referred to [13] for additional details regarding this just-in-
time relinearization.



Algorithm 2 Updating Sparse GP Regression by Bayes Tree
while collecting data do

1. Get new measurement results, store new factors Fnew and identify
related variables θnf =

⋃
θi, fi ∈ Fnew . If the state x(ti) ∈ θnf is

missing, then it is replaced by variables used in interpolation (Eq. 20);
If x(ti) ∈ θnf is a new state to estimate, the previous state to estimate
is added to θnf , and a Gaussian process prior factor is stored.
2. For each affected variable in θaff = θlin ∪ θnf , remove the
corresponding clique and ascendants up to the root of Bayes tree.
3. Relinearize the factors required to recreate the removed part. Use
interpolation when linearizing factors involving missing states (Eq. 16)
4. Add cached marginal factors from orphaned sub-trees of removed
cliques and create a factor graph
5. Eliminate the factor graph by a new variable ordering, create a Bayes
tree, and attach back orphaned sub-trees
6. Partially update estimate from root to leaves and stop walking down a
branch when the updates to variables that the child clique is conditioned
on are not significant enough
7. Collect variables involved in the measurement factors Flin where
previous linearization point is far from current estimate, θlin =

⋃
θi,

fi ∈ Flin

end while

tree and interpolation for incremental updates, our algorithm
can yield even greater gains in the online trajectory estimation
scenario. We compare:
• PB: Periodic batch (described in Section II). This is the

state-of-the-art algorithm presented in Barfoot et al. [2]
(XL variable ordering), which is periodically executed as
data is received.

• PBVR: Periodic batch with variable reordering (described
in Section III).

• BTGP: The proposed approach - Bayes tree with Gaus-
sian process prior factors (described in Section IV).

If the GP is only used to estimate the state at measurement
times, the proposed approach offers little beyond a reinter-
pretation of the standard discrete-time iSAM 2.0 algorithm.
Therefore, we also compare our GP-based algorithm, which
leverages interpolation, to the standard Bayes tree approach
used in iSAM 2.0. We show that by interpolating large
fractions of the trajectory during optimization, the GP allows
us to realize significant performance gains over iSAM 2.0 with
minimal loss in accuracy. For these experiments we compare:
• without interpolation: BTGP without interpolation at

a series of lower temporal resolutions. Without interpo-
lation BTGP is algorithmically identical to iSAM 2.0.
Measurements between two estimated states are simply
ignored.

• with interpolation: BTGP with interpolation at a series
of lower resolutions. In contrast to the above case,
measurements between estimated states are fully utilized
by interpolating missing states at measurement times
(described in Section IV-B).

• finest estimate: The baseline. BTGP at the finest reso-
lution, estimating all states at measurement times. When
measurements are synchronous with evenly-spaced way-
points and no interpolation is used, BTGP is identical to
iSAM 2.0 applied to the full dataset.
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Fig. 4: Synthetic dataset: Ground truth and state estimates
are shown. Lines between trajectory points and landmarks
indicate range measurements. State estimates obtained from
BTGP approach are very close to ground truth.

All algorithms are implemented with the same C++ libray,
GTSAM 3.2,5 to make the comparison fair and meaningful.
Evaluation is performed on three datasets summarized in
Table II. We first evaluate performance in a synthetic dataset
(Section V-A), analyzing estimation errors with respect to
ground truth data. Results using real-world datasets are then
presented in Sections V-B and V-C.

A. Synthetic SLAM Exploration Task

This dataset consists of an exploration task with 1,500 time
steps. Each time step contains a trajectory state x(ti) =
[ p(ti) ṗ(ti) ]ᵀ, p(ti) = [ x(ti) y(ti) θ(ti) ]ᵀ, an
odometry measurement, and a range measurement related to
a nearby landmark. The total number of landmarks is 298.
The trajectory is randomly sampled from a Gaussian process
generated from white noise acceleration p̈(t) = w(t), i.e.
constant velocity, and with zero mean.

ẋ(t) = Ax(t) + Fw(t) (22)

where

x(t) =

[
p(t)
ṗ(t)

]
, p(t) =

x(t)
y(t)
θ(t)

 , A =

[
0 I
0 0

]
,

F =

[
0
I

]
, w(t) ∼ GP(0,Qcδ(t− t′)) (23)

Note that velocity ṗ(t) must to be included in trajectory state
to represent the motion in LTV SDE form [2].

The odometry and range measurements with Gaussian noise
are specified in Eq. 24 and Eq. 25 respectively.

yio =

[
cos θ(ti) · ẋ(ti) + sin θ(ti) · ẏ(ti)

θ̇(ti)

]
+ no (24)

yir =
∥∥[x(ti) y(ti)

]ᵀ − `j∥∥2
+ nr (25)

5https://collab.cc.gatech.edu/borg/gtsam/



TABLE II: Summary of experimental datasets

# time steps # odo. m. # landmark m. # landmarks travel dist.(km)
Synthetic 1,500 1,500 1,500 298 0.2

Auto. Mower 9,658 9,658 3,529 4 1.9
Victoria Park 6,969 6,969 3,640 151 3.5
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Fig. 6: The Autonomous Lawnmower dataset: Ground truth
and state estimates are shown. The range measurements are
sparse, noisy, and asynchronous. Ground truth and state esti-
mates obtained from BTGP are very close.

where yio consists of the robot-oriented velocity and heading
angle velocity with Gaussian noise, and yir is the distance
between the robot and a specific landmark `j at ti with
Gaussian noise.

We compare the computation time of the three approaches
(PB, PBVR and BTGP) in Fig. 5. The incremental Gaussian
process regression (BTGP) offers significant improvements in
computation time compared to the batch approaches (PBVR
and PB).

We also demonstrate that BTGP can further increase speed
over a naive application of the Bayes tree (e.g. iSAM 2.0)
without sacrificing much accuracy by leveraging interpolation.
To illustrate the trade-off between the accuracy and time
efficiency due to interpolation, we plot RMSE of distance
errors and the total computation time by varying the time step
difference (the rate of interpolation) between estimated states.

B. The Autonomous Lawnmower

The second experiment evaluates our approach on real data
from a freely available range-only SLAM dataset collected
from an autonomous lawn-mowing robot [7]. The “Plaza”
dataset consists of odometer data and range data to stationary
landmarks collected via time-of-flight radio nodes. (Additional
details on the experimental setup can be found in [7].) Ground
truth paths are computed from GPS readings and have 2cm
accuracy according to [7].

The environment, including the locations of the landmarks
and the ground truth paths, are shown in Fig. 6. The robot
travelled 1.9km, occupied 9,658 poses, and received 3,529

range measurements, while following a typical path generated
during mowing. The dataset has sparse range measurements,
but contains odometry measurements at each time step. The
results of incremental BTGP are shown in Fig. 6 and demon-
strate that we are able to estimate the robot’s trajectory and
map with a very high degree of accuracy.

As in Section V-A, performance of three approaches – peri-
odic batch relinearization (PB), periodic batch relinearization
with variable reordering (PBVR) and incremental Bayes tree
(BTGP) are compared in Fig. 7.

In this dataset, the number of landmarks is 4, which is
extremely small relative to the number of trajectory states,
so there is no performance gain from reordering. However,
the Bayes tree-based approach dramatically outperforms the
other two approaches. As the problem size increases, there
is negligible increase in computation time, even for close to
10,000 trajectory states.

C. Victoria Park

The third experiment evaluates our approach on the Victoria
Park dataset [10], which consists of range-bearing measure-
ments to landmarks, and speed and steering odometry mea-
surements. The data was collected from a vehicle equipped
with a laser sensor driving through the Sydney’s Victoria Park.
The environment contains a high number of trees as land-
marks. The vehicle travelled ∼ 3.5 km in 26 minutes. After
repeated measurements, taken when the vehicle is stationary,
are dropped, the dataset consists of 6,969 time steps and 3,640
range-bearing measurements relative to 151 landmarks. The
bearing measurement is specified in Eq. 26, as the relative
angle from vehicle heading to the landmark direction with
Gaussian noise where [ xj yj ]ᵀ is location of landmark j.

yib = atan2 (yj − y(ti), xj − x(ti))− θ(ti) + nib (26)

The results, shown in Figure 8, further demonstrate the
advantages of BTGP. As seen from the upper right plot,
variable reordering drastically reduces computation time when
used within batch optimization (PBVR), and even further in
the incremental algorithm (BTGP).

VI. CONCLUSION

We have introduced an incremental sparse Gaussian pro-
cess regression algorithm for computing the solution to the
continuous-time simultaneous trajectory estimation and map-
ping (STEAM) problem. The proposed algorithm elegantly
combines the benefits of Gaussian process-based approaches
to STEAM while simultaneously employing state-of-the-art
innovations from incremental discrete-time algorithms for



0 2 4 6 8 10 12 14 16 18 203

3.5

4

4.5

5

5.5

6

time step difference between two estimated states

tim
e 

(s
ec

)

Computation Time

 

 
without interpolation
with interpolation
finest est.

0 2 4 6 8 10 12 14 16 18 200.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 RMSE of distance errors of estimated states

time step difference between two estimated states

RM
SE

 (m
)

 

 
without interpolation
with interpolation
finest est. at estimated states

0 500 1000 15000

0.05

0.1

0.15

0.2

time step

tim
e 

(s
ec

)
Computation Time of Each Step

 

 
PB /1
PBVR /1
BTGP /1

0 500 1000 15000

5

10

15

20

time step

tim
e 

(s
ec

)

Accumulated Computation Time

 

 
PB /1
PBVR /1
BTGP /1
PB /10
PBVR /10
BTGP /10

Fig. 5: Synthetic dataset: (Left Column) Comparison of the computation time of three approaches PB, PBVR, and BTGP.
The modifiers /1 and /10 indicate frequency of state updates. For example: BTGP/1 updates the estimate after 1 new range
measurement using BTGP. Likewise BTGP/10 updates the estimate after 10 new range measurements using BTGP. For fair
comparison no interpolation is used by BTGP. Due to the large number of landmarks, 298, compared to the number of trajectory
states, variable reordering dramatically improves the performance. (Right Column) Trade-off between computation time and
accuracy if BTGP makes use of interpolation. The y-axis measures the RMSE of distance errors of the estimated trajectory states
and total computation time with increasing amounts of interpolation. The x-axis measures the time step difference between
two estimated (non-interpolated) states. “Without interpolation” means that the number of states is reduced, but measurements
taken at the missing states are ignored. This is equivalent to running iSAM 2.0 to find a trajectory with coarse discretization.
“With interpolation” is the BTGP algorithm that interpolates missing states while incorporating odometry measurements at the
interpolated states. “Finest estimate” is the baseline which measures RMSE and computation time if the number of states is
not reduced. This is exactly equivalent to iSAM 2.0 run on the full measurement and odometry data. The results indicate that
interpolating ∼ 90% of the states (i.e. estimating only ∼ 10% of the states) while running BTGP can result in a 33% reduction
in computation time over iSAM 2.0 without sacrificing accuracy.

smoothing and mapping. Our empirical results show that by
parameterizing trajectories with a small number of states and
utilizing Gaussian process interpolation, our algorithm can
realize large gains in speed over iSAM 2.0 with very little
loss in accuracy (e.g. reducing computation time by 68%
while increasing RMSE by only 8cm on the Autonomous
Lawnmower Dataset) .
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